
REVIEW

Breeding for disease resistance in soybean: a global perspective

Feng Lin1 • Sushil Satish Chhapekar2 • Caio Canella Vieira2,3 • Marcos Paulo Da Silva4 •

Alejandro Rojas4 • Dongho Lee2,3 • Nianxi Liu5 • Esteban Mariano Pardo6 • Yi-Chen Lee3 •

Zhimin Dong5 • Jose Baldin Pinheiro7 • Leonardo Daniel Ploper6 • John Rupe4 • Pengyin Chen2,3 •

Dechun Wang1 • Henry T. Nguyen2

Received: 21 November 2021 / Accepted: 11 April 2022 / Published online: 5 July 2022

� The Author(s) 2022

Abstract

Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28

important diseases in all major soybean production regions in the world.

Abstract Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding

programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate

change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection

have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into

improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is

a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and

their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and

viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which

include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst

nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based

cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this

review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a

consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant

genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds

light on future directions of accelerated soybean breeding and translational genomics studies.

Introduction

Soybean [Glycine max (L.) Merr.] is one of the most

important crops globally. It produced 70.86% of the global

supply of plant-based protein meal and 28.88% of the

plant-based oil (second only to palm oil) in the 2020/2021

market year (Market View Data Base, Untied Soybean

Board 2021. https://marketviewdb.centrec.com/?bi=Glo

bal_MealandOil_Consumption_Annual). Total world soy-

bean production in 2020 was 353.5 million metric tons

(Mt), and the estimated cultivated area was 127.0 million

ha. While cultivated throughout the world, 96.2% of soy-

bean production is concentrated in ten countries: Brazil

(121.8 million Mt), the USA (112.5 million Mt), Argentina

(48.8 million Mt), China (19.6 million Mt), India (11.2

million Mt), Paraguay (11.0 million Mt), Canada (6.4

million Mt), Russia (4.3 million Mt), Ukraine (2.8 million

Mt), and Bolivia (2.8 million Mt) (FAOSTAT 2020;

Fig. 1). A major constraint to soybean production is disease

loss. Of more than 200 pathogens known to infect soybean,

only about 35 are economically important (Hartman et al.

2016). The most prevalent diseases in major soybean pro-

duction regions of the world are presented in 1. The type

and severity of disease and the degree of yield and seed

quality loss vary with region and year, depending on the

climate and the growing season weather, cultural and dis-

ease control practices, and the genetic diversity of the

pathogens and the soybean cultivars. Unfortunately, the
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proportion of global soybean yield loss due to diseases

increased from * 11% in 1994 to 27% in 2006. In 1994,

soybean diseases caused losses of nearly 15 million Mt

(10.87% of total production), valued at more than $3 bil-

lion across the top ten soybean production countries

(Wrather et al. 1997). In 1998, the world soybean yield

losses due to diseases were more than 28 million Mt

(18.49% of total production), more than doubled the losses

in 1994 ([ $6 billion) (Wrather et al. 2001). In 2006, a

total of 59.9 million Mt of soybean production were

reduced in the world, accounting for more than 27% of the

total soybean production (220.4 million Mt) (Wrather et al.

2010).

In a recent report of soybean production losses caused

by diseases in the USA and Canada from 2010 to 2014,

yearly losses ranged from 10.06 to 13.92 million Mt

(11.7–14.2% of total soybean production) (Allen et al.

2017). These losses are the result of many diseases caused

by a range of fungi, bacteria, phytoplasmas, nematodes,

and viruses. Recent meta-analyses of soybean disease los-

ses in the USA over the last 24 years found that the greatest

losses across states and years were from soybean cyst

nematode (SCN) (Heterodera glycines Ichinohe), charcoal

rot [Macrophomina phaseolina (Tassi) Goid], and seedling

diseases (caused by several oomycetes and fungi) (Bandara

et al. 2020; Roth et al. 2020). Important intermittent dis-

eases caused by variations in the weather were Phytoph-

thora root and stem rot (Phytophthora sojae Kaufmann &

Gerdemann), sudden death syndrome (SDS) (Fusarium

virguliforme O’Donnell and T. Aoki), and Sclerotinia stem

rot [Sclerotinia sclerotiorum (Lib.)] (Roth et al. 2020).

Root-knot nematode (Meloidogyne spp.), reniform nema-

tode (Rotylenchulus reniformis Linford & Oliveira), and

Diaporthe diseases were emerging diseases. Disease pres-

sure appears to be increasing as greater yield losses have

been observed over time (Bandara et al. 2020).

In Brazil, estimates in 1997 reported that the greatest

disease losses were from stem canker (Diaporthe aspalathi

(E. Jansen, Castl. & Crous) and D. caulivora (Athow &

Caldwell) J.M. Santos, Vrandecic & A.J.L. Phillips), brown

spot (Septoria glycines Hemmi), Cercospora leaf blight

(CLB)/purple seed stain (PSS) [Cercospora kikuchii

(Matsumoto & Tomoyasu) M. W. Gardner], and charcoal

rot followed by soybean cyst nematode, seedling diseases,

and Sclerotinia stem rot (Wrather et al. 1997). However,

after soybean rust [Phakopsora pachyrhizi (Sydow. &

Sydow.)] was introduced in Brazil in 2002, it quickly

became the most suppressive soybean pathogen causing

yield losses of nearly sixfold greater than CLB/PSS, the

second most damaging disease in the country (Wrather

et al. 2010). Soybean rust is particularly damaging in Brazil

due to the year-round survival of the pathogen in produc-

tion areas unlike in neighboring Argentina, where the

pathogen must be re-introduced each year, therefore

resulting in significantly less damage than in Brazil. The

major soybean diseases in Argentina include SDS, charcoal

rot, Cercospora leaf blight, brown spot, target spot

[Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei],

and Sclerotinia stem rot. The most prevalent soybean dis-

ease in China is soybean mosaic virus (SMV). Other major

diseases in China include frogeye leaf spot (Cercospora

sojina Hara), SCN, anthracnose (Colletotrichum spp.), root

rot (P. sojae, Pythium spp., Fusarium spp.), bacterial dis-

eases, Sclerotinia stem rot, downy mildew [Peronospora

manshurica (Naum.) Syd.], and soybean rust (Wrather

et al. 1997, 2001, 2010). Prominent diseases in India

include viruses, Sclerotium blight (Sclerotium rolfsii

Sacc.), anthracnose (Colletotrichum spp.), and soybean rust

(Wrather et al. 2010).

Russia and Ukraine are the most soybean productive

countries in the world. Common soybean diseases in

Russia include SCN, SMV, downy mildew, frogeye leaf

spot, Phyllosticta leaf spot (Pleosphaerulina sojicola

Miura, syn. Phyllosticta sojicola C. Massal.), CLB/PSS,

brown spot, bacterial bustle (Xanthomonas axonopodis pv.

glycines), and bacterial blight (Pseudomonas syringae pv.

glycinea Coerper) (Bushnev et al. 2020; Sinegovskaya

2021). In Ukraine, SMV is a major concern which often

infects together with bean yellow mosaic virus (BYMV),

and Alfalfa mosaic virus (AMV) in the right-bank region

(Kyrychennko et al. 2012; Mishchenko et al. 2017), while

in the Forest-Steppe region, Alternaria leaf spot, downy

mildew, Fusarium wilt and root rot, brown spot, and bac-

terial blight are the most prevalent soybean diseases

(Sergiienko et al. 2021).

Africa and Australia represent geographical regions with

the potential to become major soybean producers in the

future (Hartman and Murithi, 2019). Africa produces about

1% of global soybean production (FAOSTAT, 2020). The

major soybean diseases in Africa include soybean rust,

frogeye leaf spot, red leaf blotch (Coniothyrium glycines),

and SDS (Murithi et al. 2016; Hartman and Murithi, 2019).

Australia produced 17,323 tons of soybean in 2020

(FAOSTAT 2020), and the major soybean diseases include

charcoal rot, sclerotinia stem rot, Phytophthora root rot,

and soybean rust (Ryley 2013).

In the future, soybean diseases may be continuously

severe and difficult to manage, especially with the signif-

icant changes in the global climate (Roth et al. 2020). Since

1981, global temperatures have risen 0.18 �C per decade

(www.climate.gov) and are expected to rise 6 �C by the

next century (Mikhaylov et al. 2020). Temperatures and

water precipitation are expected to increase in many areas

(Tebaldi et al. 2006; Karl et al. 2009), but the increase in

rainfall will be followed by more frequent extreme weather

events as well as more frequent and severe droughts,
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making the overall weather patterns less consistent and

predictable (Prein et al. 2021). It is estimated that rising

temperatures have hindered agricultural production gains

by 21% and made the management of plant diseases

increasingly challenging (Jones 2021; Ortiz-Bobea et al.

2021). In the USA, it is predicted that climate changes may

reduce average soybean yields by 86–92% by 2050 (Yu

et al. 2021). These climate changes may alter the types,

severities, and geographical distributions of soybean dis-

eases, especially for the intermittent diseases that are

heavily influenced by environmental factors, such as Phy-

tophthora root and stem rot, SDS, and Sclerotinia stem rot

(Roth et al. 2020).

Effective soybean disease management includes cultural

practices (crop rotation, tillage, clean seed, etc.), chemical

applications (foliar, seed, or soil), but the most important

component is the deployment of resistant cultivars (Grau

et al. 2004). Resistant cultivars can carry either vertical

resistance, horizontal resistance, or both. Vertical resis-

tance is contributed by resistance genes (R genes) for

specific diseases, such as SCN (Rhg), Phytophthora root

and stem rot (Rps), soybean rust (Rpp), frogeye leaf spot

(Rcs), bacterial blight (Rpg), and SMV (Rsv and Rsc). R

genes have been widely deployed conferring complete

resistance to some pathotypes of the pathogen. The R genes

typically follow a gene-for-gene interaction with the

corresponding avirulence (Avr) factors from the pathogen,

and resistance occurs only when the R gene and Avr factors

both exist (Whitham et al. 2016). Therefore, R genes are

pathotype (race)-specific, i.e., they may confer full pro-

tection to some pathotypes of the pathogen, while they are

completely susceptible to others. R genes are often non-

durable, and can be quickly overcome, due to the fast shift

of the pathogen populations. For instance, the Rpp1 and

Rpp3 genes mediated resistance to soybean rust were

defeated the following year after the disease first occurred

in Brazil in 2001 (Garcia et al. 2008; Langenbach et al.

2016). Another example is the Rps1k gene which has been

traditionally deployed since the 1990s, can be defeated by

most of the newly emerged pathotypes of Phytophthora

sojae (McCoy et al. 2021). Although there are some

exceptions such as Rcs3 which has provided durable

resistance against all known races of frogeye leaf spot in

the USA (Boerma and Phillips 1983; Mian et al. 2008),

searching for novel sources of resistance genes is a vital

task for the deployment of vertical resistance and sustain-

ability of the global soybean value chain.

In contrast, horizontal resistance (sometimes called

partial resistance or tolerance) is quantitative and conferred

by multiple minor effect genes and/or quantitative trait loci

(QTL). Unlike vertical resistance that occurs only to some

specific pathogens, horizontal resistance is widely involved

Fig. 1 Global soybean yield production in 2020 (data obtained from
FAOSTAT) and major diseases in top ten soybean production
countries. SCN: soybean cyst nematode; SDS: sudden death

syndrome; PSS: Phomopsis seed decay; CLB: Cercospora leaf blight;
SMV: soybean mosaic virus; BYMV: bean yellow mosaic virus;
AMV: Alfalfa mosaic virus

Theoretical and Applied Genetics (2022) 135:3773–3872 3775

123



in multiple soybean diseases and is known as the only type

of resistance to many soybean diseases, including SDS,

Sclerotinia stem rot, root-knot nematode, and most

Pythium species. Horizontal resistance is usually consid-

ered pathotype non-specific (Dorrance et al. 2008; St. Clair

2010; Mundt 2014; Nelson et al. 2018; Karhoff et al.

2019), although some isolate specific QTLs have also been

identified in soybean (Lee et al. 2014; Stasko et al. 2016;

Lin et al. 2021). Therefore, horizontal resistance is con-

sidered more durable.

The traditional introgression of resistance genes into

resistant cultivars can take more than ten years starting

from making crosses between the recurrent parents and the

resistance donor parents. Fortunately, with the develop-

ment of molecular marker technology, especially with the

sequencing of the soybean genome and the development of

low cost of high-throughput genotyping (such as the

BARCSoySNP6K and BARCSoySNP50K iSelect Bead-

Chips), breeders can make selections more efficiently and

accurately (Song et al. 2013, 2020). Marker-assisted

selection (MAS) has proved to be the most successful

approach in the selection of R genes or major QTLs

(Ribaut and Hoisington 1998). The markers used for MAS

have evolved from the low-efficiency restriction fragment

length polymorphism (RFLP) markers to simple sequence

repeat (SSR) markers, and currently, to more efficient and

cost-friendly SNP markers in modern soybean breeding

programs. However, for minor effect QTLs, genomic

selection (GS) has been demonstrated to outperform MAS

with higher accuracy and efficiency (Bao et al. 2014; Wen

et al. 2018). For example, Bao et al. (2014) genotyped 282

soybean accessions for resistance to SCN HG type 0 and

discovered that GS using full marker set produced signif-

icantly more accurate predictions than MAS using two

rhg1-associated DNA markers. In another study for soy-

bean resistance to white mold (Wen et al. 2018), the GS

prediction accuracy was estimated at 0.64, which was

significantly higher than that of MAS (0.47–0.51), although

MAS was still 24–26% higher than using random SNPs.

Moreover, with the recent development of new technolo-

gies such as GWA studies, numerous SNP markers have

been identified for soybean resistance against various dis-

eases and have the potential to be deployed in the future

(Wen et al. 2014; Vuong et al. 2015; Zhang et al. 2015a;

Chang et al. 2016; Rincker et al. 2016a; Coser et al. 2017;

Moellers et al. 2017; Lin et al. 2020). On the other hand,

genome-editing technology (such as CRISPR/Cas9) allows

plant breeders to fine-tune gene regulation toward the

improvement of crop resistance to various diseases (Chen

et al. 2019).
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To assist soybean breeders to develop effective breeding

strategies under the global climate change, reducing the

world soybean yield loss due to diseases and ensure the

continuous growth and sustainability of the global soybean

production in the next decade, this review aims to: 1.

provide comprehensive atlas of soybean genes and QTLs

conferring resistance to 28 economically important and

emerging diseases, including their donor source, genetic

position, tightly linked markers, resistance spectrum, and

testing methods; 2. validate high-quality QTLs across dif-

ferent studies based on the overlapping of their genomic

positions; and 3. offer comprehensive future perspectives

and breeding suggestions for disease-related pipelines. This

review may also serve as a guideline and toolbox for

soybean breeders around the world.

Section I. Soybean resistance to nematode
diseases

Plant–parasitic nematodes are the major constraints for

soybean production worldwide. Nematodes alone are

responsible for a projected loss of $78 billion annually

worldwide with a 10–15% average yield loss in soybean

(Lima et al. 2017). The intensity of yield loss caused by

parasitic nematodes are variable and typically depends on

several factors including the nematode species, the nema-

tode population density, management practices, the genetic

background of soybean varieties, and soil and environ-

mental factors (Bradley et al. 2021). In recent decades,

nematode infestation has been spread in most soybean

producing countries in the world including the USA, Bra-

zil, Canada, South Africa, Japan, China, and India. Soy-

bean cyst nematode, southern root-knot nematode,

reniform, and lance nematodes are the major plant–

parasitic nematodes in soybean around the world resulting

in losses of as much as 100% (Wrather and Koening 2009;

Kim et al. 2016; Bradley et al. 2021). The detailed infor-

mation of each specific nematode and breeding efforts to

enhance the levels of resistance is described below.

Soybean cyst nematode

Among plant–parasitic nematode species, soybean cyst

nematode (SCN, caused by Heterodera glycines Ichinohe)

is the most destructive sedentary and obligate parasite of

soybean causing up to 30% yield loss (Mueller et al. 2016).

The annual production losses caused by SCN are more than

twice as much as any other diseases in North America,

causing projected yearly losses of billions of dollars

worldwide. In 1915, Japan reported the first occurrence of

SCN, and later in 1954 it was identified in North Carolina,

USA (Winstead et al. 1955; Riggs, 2004), and later in

Ontario, Canada (Anderson et al. 1988). Subsequently, it

spread to most soybean-producing countries causing severe

yield losses worldwide. For instance, more than 3.5 million

Mt of production losses caused by SCN were reported in 28

states of the USA (Koenning and Wrather 2010; Allen et al.

2017) corresponding to more than $1 billion in value (Liu

et al. 2012). Later, SCN infestation was identified in

Quebec province, Canada (Mimee et al. 2015) and some of

the soybean cultivated provinces in China (Peng et al.

2016).

While crop damage due to SCN is devastating, the

symptoms above the ground level are not every time

noticeable, and infestations are typically only identified in

the advanced phase of infection. At this stage, a significant

amount of damage has already taken place. Symptoms

include chlorosis, stunting, reduced root development, and
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decreased nodule formation (Niblack et al. 2006). Several

traditional practices including biological, chemical, and

physical methods have been attempted to control SCN

infestation but were found inadequate for the management

of the disease. The development and deployment of resis-

tant cultivars along with crop rotation methods are the

Table 1 Soybean diseases in major soybean production regions of the world

Common disease name Causal agent

Nematode diseases Lance nematodesa Hoplolaimus spp.

Lesion nematodes Pratylenchus spp.

Reniform nematodea Rotylenchulus reniformis

Root-knot nematodesa Meloidogyne spp.

Soybean cyst nematodea Heterodera glycines

Oomycete diseases Downy mildewa
Peronospora manshurica

Phytophthora root and stem rota Phytophthora sojae, P. sanseomeana

Pythium damping off and root rota Pythium spp.

Fungal diseases Alternaria leaf spot Alternaria spp.

Anthracnose Colletotrichum spp.

Brown spot Septoria glycines

Brown stem rota Cadophora gregata

Cercospora leaf blight and purple seed staina Cercospora kikuchii

Charcoal rota Macrophomina phaseolina

Frogeye leaf spota Cercospora sojina

Fusarium wilt and root rota Fusarium spp.

Phomopsis seed decaya Phomopsis longicolla

Phyllosticta leaf spot Pleosphaerulina sojicola

Pod and stem blight Diaporthe phaseolorum var. sojae

Powdery mildew Erysiphe diffusa

Red leaf blotcha Coniothyrium glycines

Rhizoctonia damping-off and root rota Rhizoctonia solani

Sclerotinia stem rota Sclerotinia sclerotiorum

Sclerotium blight Sclerotium rolfsii

Seedling diseasesa Fusarium spp., Alternaria spp., Pythium spp. etc

Soybean rusta Phakopsora pachyrhizi

Stem cankera Diaporthe phaseolorum var. caulivora; Diaporthe aspalathi

Sudden death syndromea Fusarium virguliforme; F. tucumaniae; F. Brasiliense; F. crassistipitatum

Taproot declinea Xylaria necrophora

Target spot and root rot Corynespora cassiicola

Violet root and lower stem rot Rhizoctonia croccorum

Bacterial diseases Bacterial blighta Pseudomonas savastanoi pv. glycinea

Bacterial pustulea Xanthomonas axonopodis pv. glycines

Wildfire Pseudomonas syringae pv. tabaci

Virus diseases Alfalfa mosaica Alfalfa mosaic virus (AMV)

Bean pod mottlea Bean pod mottle virus (BPMV)

Bean yellow mosaic Bean yellow mosaic virus (BYMV)

Brazilian bud blight Tobacco streak virus (TSV)

Cowpea mild mottle Cowpea mild mottle virus (CMMV)

Peanut mottle Peanut mottle virus (PMV)

Soybean dwarfa Soybean dwarf virus (SbDV)

Soybean mosaica Soybean mosaic virus (SMV)

Soybean vein necrotic virusa soybean vein necrotic virus (SVNV)

aSoybean diseases included in this review
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preferably efficient practice for the management of SCN

(Davis and Tylka 2000).

Breeding for SCN resistance involves the genetic map-

ping of QTLs/genes associated with the resistant phenotype

and understanding the underlying resistance mechanism.

The first Rhg (resistance to H. glycines) locus was reported

around the mid-1950s (Ross and Brim 1957) which

described plant introductions (PIs) 88,788 and ‘Peking’ (PI

548,402) as sources of SCN resistance. These two acces-

sions were integrated into the soybean breeding programs

through cycles of backcrossing. With the rapid progress in

the availability of molecular markers and mapping tech-

niques, numerous SCN-resistance loci have been reported

by the soybean research community. Table 2 summarizes

the main reported QTLs linked to SCN resistance. In

soybean, SCN resistance trait is typically multi-genic and

quantitatively inherited (Anand and Rao-Arelli 1989; Guo

et al. 2005; Vuong et al. 2010, 2011). The resistance found

in Peking was governed by three independent recessive

genes (Caldwell et al. 1960). Since then, numerous genes/

QTLs conferring SCN resistance have been mapped to

date. Among these QTLs, two loci rhg1 and Rhg4 found on

chromosomes 18 and 8, respectively, which confers resis-

tance to SCN races 1, 2, 3, 4, and 5, have been extensively

investigated (Kim et al. 2016). In diverse soybean germ-

plasm lines, the rhg1 locus has been constantly mapped and

identified at a sub-telomeric region on the chromosome

(Chr.) 18 (Kim et al. 2016). Using rhg1, several markers

were developed, of which Satt309 (predicted at about

0.4 cM from rhg1 locus) has been extensively applied for

MAS in soybean research (Cregan et al. 1999; Silva et al.

2007). Another major QTL for SCN resistance showed a

total phenotypic variation of about 9–28% to SCN HG

types 2.5.7 (race 1) and 0 (race 3) and was described as

Rhg4 gene from different resistant plant accessions (Con-

cibido et al. 2004). Meksem et al. (2001) described that

rhg1 and Rhg4 equally demonstrated about 98% of phe-

notypic variation in the ‘Forrest’ cultivar conferring resis-

tance to race 3 of SCN. Rhg4 mediated resistance is largely

associated with race 3 of SCN, in addition to some minor

resistance against race 2 (HG types 1.2.5.7), race 1 (2.5.7),

and race 14 (1.3.6.7). In Peking and PI 437654 accessions,

rhg1 and Rhg4 loci are essential to provide complete

resistance against some SCN races. QTL mapping in PI

567516C identified two SCN-resistance QTLs on chro-

mosomes 10 and 18, which were not linked to major rhg1

or Rhg4 loci (Vuong et al. 2010). These QTLs conferred

resistance against races 1, 2, 3, and LY1 of SCN (Young

1998). Interestingly, the QTL detected on Chr. 18 is far

away from the rhg1 locus. Another two QTLs were map-

ped on chromosomes 10 and 18 in PI 567,305 (Kim et al.

2016) and were showing elevated resistance to various

SCN HG types, identical with the study demonstrated by

Vuong et al. (2010) in PI 567516C. Therefore, these results

indicated that both PI 567,305 and PI 567516C harbor

novel QTLs which can provide SCN resistance. Recently,

the genetic analysis of the PI 567,305 line through Infinium

SoySNP6K BeadChips and genotype-by-sequencing (GBS)

revealed major QTLs on chromosomes 10 and 18 (Vuong

et al. 2021) conferring resistance to SCN as well as other

two important nematode species such as root-knot and

reniform nematodes. The unique genetic structure of PI

567,305 investigated using haplotype and copy number

variation analysis suggested the presence of different

resistance mechanisms from PI 88,788 or Peking-type.

In addition, three resistance loci for race 3 of SCN were

detected in a GWA study of 282 soybean accessions,

among which two out of these three were correlated to rhg1

and earlier mapped, FGAM1, SCN-resistance locus

whereas the third one was positioned at Chr. 18 (Zhang

et al. 2017). About 8 novel QTLs for resistance to race 3 of

SCN was also identified by Vuong et al. (2011). Further-

more, 13 significant SNPs for SCN resistance were also

identified in 7 diverse genomic regions by Zhang et al.

(2017). Out of these 13, 10 SNPs were novel, whereas the

remaining 3 were linked to earlier mapped QTLs including

rhg1 and Rhg4. An investigation performed by Zhao et al.

(2017) demonstrated the identification of 13 important

SNPs (4 novels) on five chromosomes which conferred

resistance to SCN race 1. Later, twelve SNPs significantly

linked to SCN resistance were identified on chromosomes

7, 8, 10, and 18. Of these twelve, three were positioned

close to the rhg1 locus (Tran et al. 2019). Using these data,

multiple candidate genes conferring SCN resistance have

been discovered. Liu et al. (2019) described 10 genes

having 27 mutations, among which three genes overlapped

between the two phenotypic mutants suggesting possible

involvement of these genes in nematode resistance.

The copy number of rhg1 has been categorized into two

repeat types such as high ([ 6 repeats, as in PI 88,788) and

low (about 3 repeats, as in Peking) (Cook et al. 2012). Yu

et al. (2016) demonstrated that, in the case of rhg1, both

gene-based polymorphism and copy number variation were

significantly important for SCN resistance. It also indicated

that rhg1 resistance sources with a high copy number

provided elevated resistance against SCN. Altogether it

was proposed that rhg1 locus may facilitate SCN resistance

through copy number variation of numerous genes encod-

ing amino acid transporter (AAT), a WI12 (wound-in-

ducible) protein, and an a-soluble N-ethylmaleimide-

sensitive factor (NSF) Attachment Protein (a-SNAP)

(Kandoth et al. 2017; Liu et al. 2017). Furthermore, Patil

et al. (2019) categorized the rhg1-b locus into two classes,

rhg1-b (like lines of PI 88,788-type) and rhg1-b1 (like lines

of Cloud-type) and revealed genetic basis of broad-spec-

trum resistance through interactions of copy number
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variation among rhg1 and Rhg4 genes. Liu et al. (2012)

reported that the resistance at the Rhg4 locus was provided

through the serine hydroxymethyltransferase (SHMT) gene,

whose encoding protein catalyzes the reversible conversion

of tetrahydrofolate and serine to tetrahydrofolate and gly-

cine, respectively. The two polymorphisms in the gene

GmSHMT08 positioned at the first and second exons, 389

G/C and 1165 A/T, results in modification of amino acids

such as arginine vs. proline and tyrosine vs. asparagine,

respectively, and further alteration of the kinetic properties

(Liu et al. 2012). GmSHMT08 encoded protein shows a

multifarious role in addition to essentially being involved

in the enzymatic reaction of SCN resistance (Kandoth et al.

2017). It has additional functions including structural sta-

bility, ligand binding, and interactions with other proteins

(such as GmSNAP18). Kandoth et al. (2017) showed that

rhg1-a allele is required in Forrest cultivar for SCN

resistance although it does not impart any selection pres-

sure on nematodes to shift from HG type 7. However, the

nematodes were exposed to EXF67 cv. shifted to HG type

1.3.6.7 indicating the bi-genic phenomenon of resistance

and necessity of Rhg4 in Peking-type facilitating

resistance.

Cook et al. (2014) showed the distribution of nonsyn-

onymous SNPs in the GmSNAP11 gene, its paralogous

copy identified as GmSNAP18, with novel alleles that

participated in SCN resistance, especially a-SNAP is cru-

cial for resistance in soybean varieties derived from PI-

88788. Further, Lakhssassi et al. (2017) demonstrate that

the predicted protein of a-SNAP corresponds to truncated

GmSNAP11 and not to GmSNAP18 (289 amino acids, aa).

GmSNAP11 exists in Forrest Pecking type in two different

forms such as GmSNAP11-T1 (239 aa) and GmSNAP11-

T2 (244 aa). A nonsynonymous SNP known as map-5149

tightly linked to resistance against race 3 of SCN was

identified in GmSNAP11 (Li et al. 2016a, b, c). Altogether,

these results suggest the novel nature of GmSNAP11 pro-

viding SCN resistance in soybean.

Marker-assisted selection (MAS) is an effective and

routinely performed strategy to develop SCN resistant

soybean lines, representing the most rapid, cost-effective,

accurate, and reliable method. Shi et al. (2015) developed

functional Kompetitive Allele-Specific PCR (KASP) mar-

ker assays (GSM381 and GSM383 at rhg1; GSM191 at

Rhg4) which were effectively applied for rapid and quick

selection of SCN resistance, as well as identification of

Peking and PI 88,788 types of resistance. Kadam et al.

(2016) developed KASPar (KBioscience Competitive

Allele-Specific PCR) assays from SNPs at rhg1, Rhg4, and

other novel QTLs. They effectively differentiated the copy

number variation at rhg1 into three groups including (1)

high resistant such as PI 88,788 type, (2) low copy resistant

such as Peking type, and (3) susceptible single copy such as

Williams82 type numbers. Tian et al. (2019) developed

cleaved amplified polymorphic sequences (CAPS) markers

using GmSNAP11 (minor resistant to SCN) and combined

with markers Rhg-389 and rhg1-2 for genotyping a panel

consisting of 209 soybean accessions with variable SCN

resistance.

The underlying molecular mechanisms of SCN resis-

tance are complex and yet to be unveiled. Some studies

suggested that there could be several disease-resistance

proteins involved in SCN resistance, comprising Nucleo-

tide-binding site-leucine-rich repeats (NBS-LRR), cyto-

chrome P450s, RING domain proteins, zinc-finger domain

proteins, protein kinases, transcription factors such as

MYB and WRKY. Kofsky et al. (2021) studied the tran-

scriptome of wild SCN resistant soybean (Glycine soja)

ecotype, ‘NRS100’, and proposed biochemical mecha-

nisms. This included the downregulation of the jasmonic

acid (JA) signaling pathway to permit resistance response

led by salicylic acid (SA) signaling-activation and poly-

amine synthesis which further maintains structural stability

of root cell walls.

Soybean root-knot nematode

Root-knot nematodes (Meloidogyne spp.) are considered

the most economically important and widely distributed

parthenogenic plant–parasitic nematodes in the world

(Trudgill and Blok 2001). Southern Root-knot nematode

[SRKN, M. incognita (Kofold & White) Chitwood] was

considered as one of the major plant–parasitic nematodes

based on scientific and economic importance (Jones et al.

2013). The observed symptoms of SRKN in soybean are

similar with the symptoms of abiotic stresses, including

stunted growth, wilting, leaf discoloration, and deformation

of the roots. The magnitude of crop losses depends on

historical crop rotation and field usage, environmental

parameters, initial nematode population density, soil type,

and genetic background (Vieira et al. 2021).

SRKN is challenging to control due to its short life cycle

and high reproductive rates (Trudgill and Blok 2001).

Chemical approaches used to be an effective management

option, however, most commercial nematicides and soil

fumigants were banned due to toxicity to humans, animals,

and environments (Abad et al. 2008). Crop rotation is

especially challenging and limited since most flowering

plants are hosts to SRKN. The use of genetic resistance

becomes the most sustainable—economically, environ-

mentally, and socially—alternative to efficiently control

the damage caused by SRKN in soybean (Vieira et al.

2021).

Significant efforts have been taken to identify soybean

accessions resistant to SRKN. Luzzi et al. (1987) screened

Theoretical and Applied Genetics (2022) 135:3773–3872 3783

123



T
a
b
le

3
S
o
y
b
ea
n
lo
ci

co
n
fe
rr
in
g
h
ig
h
re
si
st
an
ce

to
so
u
th
er
n
ro
o
t-
k
n
o
t
n
em

at
o
d
e
(c
au
se
d
b
y
M
e
lo
id
o
g
y
n
e
sp
p
.)

M
L
G

(C
h
r.
)

L
o
cu
s/
al
le
le

n
am

ea
T
ig
h
tl
y
li
n
k
ed
/fl
an
k
in
g
m
ar
k
er
s

M
ar
k
er

p
o
si
ti
o
n

(G
m
ax
2
.0
)

T
es
ti
n
g
m
et
h
o
d
s/

R
es
is
ta
n
ce

sp
ec
tr
u
m

P
V
E
b

P
o
p
u
la
ti
o
n
ty
p
e

(s
iz
e)

D
o
n
o
r

so
u
rc
e

R
ef
er
en
ce
s

M
L
G

C
2

(C
h
r.
6
)

–
S
at
t2
8
6
an
d
S
at
t3
6
5

1
6
,2
0
0
,0
0
0
–
1
9
,6
0
0
,0
0
0

G
re
en
h
o
u
se

te
st
/R
ac
e
3

–
F
2
:4

(3
5
)

P
I
9
6
3
5
4

S
h
ea
ri
n
et

al
.

( 2
0
0
9
)

M
L
G

M

(C
h
r.
7
)

–
S
at
t2
0
1
an
d
S
at
t5
9
0

1
,3
0
1
,3
1
5
–
2
,0
2
5
,2
4
4

G
re
en
h
o
u
se

te
st
/R
ac
e
2

6
2
.4
%

F
2
:3

(6
9
)

L
S
5
9
9
5

F
o
u
ri
e
et

al
.

(2
0
0
8
)

M
L
G

A
2

(C
h
r.
8
)

–
B
A
R
C
-0
5
1
8
4
7
–
1
1
,2
7
0
an
d
B
A
R
C
-

0
3
9
2
7
3
–
0
7
,4
7
6

2
2
,0
4
8
,1
6
8
–
3
5
,8
5
6
,3
6
8

G
re
en
h
o
u
se

te
st
/R
ac
e
3

6
.4
%

F
8
:9

(2
4
6
)

P
I 4
3
8
4
8
9
B

X
u
et

al
.
( 2
0
1
3
)

M
L
G

O

(C
h
r.
1
0
)

q
R
m
i1
0
-0
1

G
2
4
8
A
-1

1
,0
1
8
,6
6
4
–
1
,8
8
1
,0
2
7

G
re
en
h
o
u
se

te
st
/R
ac
e
3

3
1
%

F
2
:3

(1
1
0
)

P
I
9
6
3
5
4

T
am

u
lo
n
is

et
al
.

(1
9
9
7
)

S
at
t4
9
2
an
d
S
at
t3
5
8

1
,0
1
8
,6
6
4
–
1
,8
8
1
,0
2
7

G
re
en
h
o
u
se

te
st
/R
ac
e
3

5
5
.8
%

F
2
:3

(1
1
0
)

P
I
9
6
3
5
4

L
i
et

al
.
(2
0
0
1
a)

S
at
t5
0
0
an
d
S
at
t3
5
8

1
,0
1
8
,5
0
0
–
1
,3
9
5
,7
9
0

G
re
en
h
o
u
se

te
st
/R
ac
e
2

3
1
.7
%

F
2
:3

(6
9
)

L
S
5
9
9
5

F
o
u
ri
e
et

al
.

( 2
0
0
8
)

B
A
R
C
-0
6
5
4
6
9
–
1
1
,4
9
4
an
d
B
A
R
C
-

0
1
8
1
0
1
–
0
2
,5
1
7

1
,5
7
1
,1
0
5
–
2
,0
6
7
,0
0
5

G
re
en
h
o
u
se

te
st
/R
ac
e
3

2
3
.6
%

F
8
:9

(2
4
6
)

P
I 4
3
8
4
8
9
B

X
u
et

al
.
(2
0
1
3
)

B
A
R
C
S
O
Y
S
S
R
-1
0
–
0
0
9
0
an
d

B
A
R
C
S
O
Y
S
S
R
-1
0
–
0
1
0
5

1
,4
7
0
,0
0
0
–
1
,6
4
0
,0
0
0

G
re
en
h
o
u
se

te
st
/R
ac
e
3

5
0
%

F
5
:6

(2
6
9
)

P
I
9
6
3
5
4

P
h
am

et
al
.

(2
0
1
3
)

ss
7
1
5
6
0
5
6
5
4

1
,5
0
7
,1
2
3
–
1
,5
1
9
,3
2
5

G
re
en
h
o
u
se

te
st
/R
ac
e
3

–
P
I
P
an
el

(1
9
3
)

P
I
9
6
3
5
4

P
as
si
an
o
tt
o
et

al
.

( 2
0
1
7
)

M
L
G

F

(C
h
r.
1
3
)

–
B
A
R
C
-0
1
0
5
0
1
–
0
0
,6
7
6
an
d
S
ct
-0
3
3

2
8
,8
2
6
,4
0
5
–
3
0
,0
7
8
,1
4
0

G
re
en
h
o
u
se

te
st
/R
ac
e
3

4
.8
%

F
8
:9

(2
4
6
)

P
I 4
3
8
4
8
9
B

X
u
et

al
.
(2
0
1
3
)

M
L
G

G

(C
h
r.
1
8
)

q
R
m
i1
8
-0
1

K
4
9
3
h
-1

an
d
C
s0
0
8
D
-1

4
7
,2
0
1
,1
5
5
–
5
0
,1
5
8
,0
9
5

G
re
en
h
o
u
se

te
st
/R
ac
e
3

1
4
.4
%

F
2
:3

(1
1
0
)

P
I
9
6
3
5
4

T
am

u
lo
n
is

et
al
.

(1
9
9
7
)

S
at
t0
1
2
an
d
S
at
t5
0
5

4
7
,2
0
1
,1
5
5
–
5
0
,1
5
8
,0
9
5

G
re
en
h
o
u
se

te
st
/R
ac
e
3

1
7
.7
%

F
2
:3

(1
1
0
)

P
I
9
6
3
5
4

L
i
et

al
.
(2
0
0
1
a)

ss
7
1
5
6
3
1
9
5
4

4
7
,2
0
1
,1
5
5
–
5
0
,1
5
8
,0
9
5

G
re
en
h
o
u
se

te
st
/R
ac
e
3

5
%

F
5
:6

(2
6
9
)

P
I
9
6
3
5
4

P
h
am

et
al
.

(2
0
1
3
)

a
L
o
cu
s
n
am

e
g
iv
en

in
th
is
st
u
d
y
,
if
th
e
p
h
y
si
ca
l
p
o
si
ti
o
n
s
o
f
Q
T
L
s
o
v
er
la
p
ea
ch

o
th
er

in
at

le
as
t
tw
o
in
d
ep
en
d
en
t
st
u
d
ie
s.
q
R
m
i1
0
-0
1
m
ea
n
s
th
e
1
st
(0
1
)
q
u
an
ti
ta
ti
v
e
(q
)
re
si
st
an
ce

(R
)
to

M
.

in
c
o
g
n
it
a
(m

i)
o
n
C
h
r.
1
0
(1
0
)

b
P
h
en
o
ty
p
ic

v
ar
ia
ti
o
n
s
ex
p
la
in
ed

b
y
th
e
m
o
le
cu
la
r
m
ar
k
er
s

3784 Theoretical and Applied Genetics (2022) 135:3773–3872

123



over 2700 soybean accessions from the USDA Soybean

Germplasm Collection and found that ‘Amredo’, PI

96,354, PI 408,088, and PI 417,444 showed lower gall

indices, fewer eggs per root system, and eggs per gram of

root than the resistant check Forrest (PI 548,655) (Luzzi

et al. 1987). Harris et al. (2002) screened 608 PIs from

Southern China and reported that PI 594753A and PI

594775A had similar resistance levels as PI 96,354 (Harris

et al. 2002). The first report on the genetic control of the

resistance to SRKN indicated that reduced galling in the

cultivar Forrest was controlled by a single dominant gene

designated as Rmi1 (Luzzi et al. 1994a). Hybridizations

between PI 96,354 9 Forrest and Forrest 9 PI 417,444

resulted in individual F3 plants and F3 populations with

higher galling than Forrest, PI 96,354, and PI 417,444,

implying the resistance from Forrest (Rmi1) differs from PI

96,354 and PI 417,444 by at least one gene (Luzzi et al.

1994b).

The first genetic mapping of resistance to SRKN (race 3)

in soybean identified two QTLs on chromosomes 10 and

18, accounting for 31% and 14% of phenotypic variation,

respectively (Tamulonis et al. 1997). The combination of

both resistance QTLs enhanced the levels of resistance to

SRKN race 3, the predominant race in the U. S. (Li et al.

2001a). An additional major QTL on Chr. 7 accounting for

62% of the phenotypic variation was reported to confer

resistance to SRKN race 2, a predominant race in soybean

production areas of South Africa (Fourie et al. 2008). In

addition, two minor QTLs on Chr. 8 (7.4% of the pheno-

typic variation) and 13 (5.6% of the phenotypic variation)

were reported to confer resistance to SRKN race 3 (Xu

et al. 2013) (Table 3).

To better understand the mechanisms of soybean resis-

tance to root-knot nematode, fine-mapping analyses were

conducted for the major QTL on Chr. 10. Pham et al.

(2013) identified three candidate genes with cell wall

modification-related functions, including Gly-

ma.10g016600 (Extensin 1 encoding function), Gly-

ma.10g016700 (Extensin 2 encoding function), and

Glyma.10g017100 (Pectinesterase 1 encoding function). In

another independent study, five candidate genes were

identified, including Glyma.10g017100, Glyma10g02150,

Glyma.10g017200, Glyma.10g017300, and Gly-

ma.10g017400, all with pectinesterase encoding-related

functions (Xu et al. 2013). Moreover, a GWA study using a

panel of diverse soybean accessions narrowed down this

QTL to a 12-kb region with five significant single

nucleotide polymorphisms (SNPs) located within Gly-

ma.10g017100 accounting for 25 to 40% of phenotypic

variations (Passianotto et al. 2017).

Multiple reports have shown that SRKN resistant soy-

bean genotypes can sustain yield under variable levels of

nematode infection. Yield suppression can reach as much

as 97% in susceptible genotypes while resistant genotypes

may show less than 1% (Herman et al. 1990). Kinloch et al.

(1984) reported a negative correlation between yield and

number of galls under high pressure, which translated in

resistant cultivars yielding as much as 5 times greater than

highly susceptible cultivars (Kinloch et al. 1984). Vieira

et al. (2021) evaluated the yield performance of 202 elite

soybean lines in field conditions with variable distributions

of SRKN and reported resistant lines yielding on average

20% higher than susceptible lines. The presence of the

major resistance allele on Chr. 10 reduced yield losses by

approximately sixfold in comparison to the susceptible

group (1.1% and 6.2% per 1000 SRKN second-stage

juveniles in 100 cm-3, respectively), which provided sig-

nificant yield protection under high SRKN pressure (Vieira

et al. 2021). However, because of the high concentration

and wide distributions of SRKN, the limited and narrow

base of genetic resistance, and lack of alternative man-

agement options, a resistance-breaking population in soy-

bean could result in devastating yield losses (Vieira et al.

2021). Consequently, further work is needed to unveil and

stack novel sources of resistance resulting in enhanced and

more durable resistance in the future (Vieira et al. 2021).

Reniform nematode and Lance nematode

Reniform nematode (Rotylenchulus reniformis Linford &

Oliveira) (RN), a sedentary semi-endoparasite, first

emerged in Hawaii on cowpeas [Vigna unguiculata (L.)

Walp.] in 1931 and was identified in Georgia, USA, in

1940 (Linford and Oliveira 1940; Smith 1940; Gavilano

et al. 2013). It has now become a major yield-limiting

parasitic nematode species in soybean growing areas in

southern and southeastern states of the USA, due to its

wide range of hosts (over 300 plant species), and the ability

of surviving in broad soil range and dry soil for an

extended period (Herald and Thames 1982; Herald and

Robinson 1990; Wrather et al. 1995; Robinson et al. 1997;

Robbins et al. 1999; Koenning and Wrather 2010). The

infestation on the roots of the host is initiated by the ver-

miform female adults, which is different from common

sedentary endo-parasitic nematode genera (Heterodera,

Globodera, and Meloidogyne). Female RN establish feed-

ing sites known as syncytium and eventually become

sedentary. The common name of RN refers to its kidney

shape characteristics. The male RN are involved in mating

but do not feed (Linford and Oliveira 1940; Gaur and Perry

1991; Ganji et al. 2013; Robbins 2013). Typical symptoms

of RN infection include root decay, stunting, and foliar

chlorosis (Cook et al. 1997; Kinloch 1998; Rivera and

Thiessen 2020). Annual soybean yield losses of up to 33%

were reported in soybean cultivars that were partially or not
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resistant to RN, resulting in an average loss of 28,000 Mt in

southern USA in 2019 (Kim et al. 2016; Allen et al. 2020).

Like other nematode pests, deployment of resistant vari-

eties has been the most effective and economical strategy

to control RN in soybean field (Kim et al. 2016).

The relationship between SCN and RN has drawn

interest since they both establish syncytium as their feeding

sites. Early literatures reported that there were common

sources of resistances for SCN and RN (Rebois et al. 1970).

Field and greenhouse screening assays were subsequently

conducted, and the studies indicated that soybean cultivars

that derived their resistance from PI 88,788 were resistant

to SCN but susceptible to RN whereas cultivars that

derived their resistance from Peking and PI 437,654 were

resistant to both SCN and RN (Robbins et al.

1994a, 1994b, 1999; Robbins and Rake 1996). Greenhouse

screening assays were commonly used to evaluate RN

resistance for soybean. Disease screening protocol for RN

was well-established by Robbins et al. (1999), in which the

reproductive index (RI) was calculated based on the

number of nematodes at test termination (Pf) and initial

infestation density (Pi) (RI = Pf/Pi). High level of RN

resistance has been reported in soybean cultivars including

Peking, ‘Dyer’, ‘Custer’, Pickett’, Forrest, ‘Hartwig’, and

‘Anand’ (Rebois et al. 1968; Robbins et al. 1994b; Davis

et al. 1996). Lee et al. (2015) also reported RN resistance in

PI 404198A, PI 438,498, PI 467,327, PI 468,915. PI

494,182, PI 507,470, PI 507,471, PI 507,476, and PI

567,516, all showing similar or less RI than the resistant

check Anand.

Three QTLs conferring RN resistance in soybean have

been identified on chromosomes 11, 18, and 19, respec-

tively, from PI 437,564 (Ha et al. 2007). Other studies have

reported and confirmed resistant loci on chromosomes 8

(Lee 2021), 11 (Jiao et al. 2015; Wilkes et al. 2020;

Usovsky et al 2021), 12 (Lee et al. 2016), 13 (Lee 2021),

15 (Lee 2021), and 18 (Jiao et al. 2015; Lee et al. 2016;

Wilkes et al. 2020; Lee 2021; Usovsky et al. 2021).

Recently, Usovsky et al. (2021) discovered the pleiotropic

effect of two genes [GmSNAP18 (rhg1-a, rhg1-b, and

rhg1-b1 allele) and GmSNAP11 (qSCN11 locus)], confer-

ring resistances to both SCN and RN in PI 438489B using

universal soybean linkage panel (USLP 1.0) and next-

generation whole-genome resequencing (WGRS) technol-

ogy (Table 4).

Lance nematodes (Hoplolaimus spp.) (LN) are migra-

tory ecto-endo plant–parasitic nematodes that are wide-

spread throughout the USA (Sher 1963; Astudillo and

Birchfield 1980; Yan et al. 2016). A total of seven species

have been identified and reported in the southeastern USA,

including Hoplolaimus galeatus Thorne, 1935; H. colum-

bus Sher, 1963; H. magnistylus Robbins, 1982; H. ste-

phanus Sher, 1963; H. seinhorsti Luc, 1958; H.

tylenchiformis von Daday, 1905; and H. concaudajuvencus

Golden and Minton, 1970 (Lewis and Fassuliotis 1982;

Robbins 1982; Koenning et al. 1999). However, only three

species (H. columbus, H. galeatus, and H. magnistylus)

have been considered economically important lance

nematodes in soybean production in the USA (Holguin

et al. 2016). The outbreak of H. columbus was first detected

in South Carolina and predominantly prevailed in South

Carolina, North Carolina, and Georgia while H. galeatus

and H. magnistylus were commonly reported in soybean

production areas in Alabama, Arkansas, Mississippi, and

Tennessee (Lewis and Fassuliotis 1982; Robbins 1982;

Koenning et al. 1999). These nematodes primarily damage

the structures of the epidermis and cortex in the root (Lewis

and Fassuliotis 1982; Lewis, 1989) and cause root stunting/

shedding, foliar chlorosis, as well as severely limiting lat-

eral root growth under heavy infestations (Kinloch 1998;

Timper 2009). Soybean yield losses from the infestation of

these LN species can be as high as 70% (Mueller and

Sanders 1987; Noe 1993). Although the resistance of host

plants is the most effective way to control plant–parasitic

nematodes, efforts to identify genetic resistance for LN

have been limited. Therefore, the application of field san-

itation and crop rotation with non-host crops is helpful to

control LN populations and reduce LN damage in soybean

production areas.

Section II. Soybean resistance to oomycete
diseases

Crop germination and stand are key factors for a successful

cropping season for soybean growers. During seed estab-

lishment, seedlings are subject to attack by several soil-

borne pathogens, resulting in lack of germination,

damping-off or plant death. Poor plant stands due to dis-

eases result in replanting and increased costs. Among the

soilborne pathogens impacting soybean are the oomycetes,

which include Phytophthora, Pythium, and Phytopythium.

The impact of these soilborne diseases is not only limited

to the beginning of the season, as root infections can occur

at later stages, often reducing yield without significant

above ground symptoms. In 2005, losses to soybean

seedling diseases in the USA were estimated at 0.89 mil-

lion Mt (Wrather and Koenning 2009). From 2006 to 2009,

soybean yield losses due to seedling diseases have

increased considerably ranking second only to soybean cyst

nematode (Koenning and Wrather 2010). There are also

oomycete diseases that occur in the canopy, like downy

mildew caused by [Peronospora manshurica (Naum.)

Sdy.], which under conducive conditions could affect seed

quality and yield (Dunleavy 1987). Key species have been

recognized as major contributors in disease development
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and most breeding efforts have focused on minimizing

impacts by Phytophthora and Pythium (Dorrance et al.

2009; Rupe et al. 2011). Recent efforts have expanded the

knowledge of oomycete species causing disease on soy-

bean, but the range of this potential species varies with the

locations (Rojas et al. 2017), and among those, some spe-

cies are considered emerging such as Phytophthora san-

someana E.M. Hansen & Reeser (McCoy et al. 2018).

Phytophthora root and stem rot

Phytophthora root and stem rot (PRSR) of soybean is one

of the most prevalent and widely distributed soybean dis-

eases, causing reduced yield and worldwide losses of 2.3

million Mt per year (Erwin and Ribeiro 1996; Koenning

and Wrather 2010; Allen et al. 2017). Phytophthora sojae

Kaufmann & Gerdemann, the main causal agent of this

disease, was initially reported in the mid-1950s in the

Midwest region of the USA (Kaufmann and Gerdemann

1958) and has since become a major concern for soybean

production causing annual losses of approximately 1.2

million Mt in the USA (Wrather et al. 2010). P. sojae is an

oomycete pathogen that survives in the soil as oospor-

es. Under optimal conditions, oospores germinate and

infect seeds and roots causing seed rot and damping-off of

seedlings. P. sojae may also cause root and stem rot that

results in wilting and plant death. While the typical brown

to purple water-soaked lesions on the stem appear mid-late

season on infected plants, early-season infection may also

result in an uneven plant stand and possibly need of

replanting (Bienapfl et al. 2011; Dorrance et al. 2016).

Screening of P. sojae for race identification and soybean

line resistance has been based on the use of hypocotyl

inoculations (Dorrance et al. 2008; Stewart and Robertson

2012; Lin et al. 2014). For P. sojae, Rps 1a, 1b, 1c, 1 k, 3a,

3b, 3c, 4, 6, 7, or 8 are part of the set of differentials, and

recent surveys have tested isolates identifying emerging

races. Of those, Rps1a-1 k, Rps3a, Rps6 and Rps8 are

deployed through resistant cultivars. However, there are

reports of resistance breakdown of Rps1 in soybean-pro-

ducing states in the Midwest of USA (Dorrance et al. 2016;

Matthiesen et al. 2021; McCoy et al. 2021). In lower fre-

quency, Rps3a and Rps6 were also defeated by some iso-

lates in the Midwest. Since not all identified resistance

genes have been deployed, it is important to monitor races

for future breeding efforts as some of the remaining

resistance genes have also been overcome by a few field

isolates (Dorrance et al. 2016; McCoy et al. 2021).

Fortunately, novel Rps genes or alleles have been

identified conferring broad-spectrum resistance to P. sojae

races. To date, more than 40 Rps genes or alleles have been

reported worldwide (Table 5). Intriguingly, the Rps genes/

alleles were not evenly distributed but were clustered on

some specific chromosomes. For instance, more than half

of the Rps genes/alleles (Rps1a-1 k, Rps7, Rps9, RpsUN1,

RpsYD25, RpsYD29, RpsHN, RpsQ, RpsWA, RpsWY,

RpsHC18, RpsX, RpsGZ, RpsDA, RpsT1, RpsT2, RpsT3,

and Rps14) were mapped in a nucleotide-binding site-leu-

cine-rich repeat (NBS-LRR) gene enriched region on Chr.

3; Six Rps genes/alleles were located on chromosomes 13

(Rps3a, Rps3b, Rps3c, Rps8, RpsSN10 and RpsCD) and 18

(Rps4, Rps5, Rps6, RpsJS, Rps12, and Rps13), respectively.

The rest of Rps genes were located at chromosomes 2

(RpsZS18), 7 (Rps11), 10 (RpsSu), 16 (Rps2 and RpsUN2),

17 (Rps10), and 19 (RpsYB30) (Table 5).

Fine mapping studies toward map-based cloning of Rps

genes have also been reported. The first cloned Rps gene is

the Rps1k from Williams82, from which three highly

similar coiled coil (CC)-NBS-LRR genes were identified

and verified through transgenic progenies (Gao et al. 2005).

Unfortunately, none of these genes can be identified in any

versions/sources of the Williams82 genome assemblies

including unassembled contigs (Wang et al 2021). In

another study, RpsUN1 and RpsUN2 were further narrowed

to a 151 kb and 36 kb genomic regions using 826 F2:3

families. Expression analyses via reverse-transcription

(RT)-PCR and RNA-seq suggested that Glyma.03g034600

and Glyma.16g215200/Glyma.16g214900 were high-con-

fidence candidate genes for RpsUN1 and RpsUN2,

respectively (Li et al. 2016a, b, c). Most recently, a map-

based cloning study revealed that the Rps11 gene encoded

a 27.7 kb NBS-LRR gene, and is derived from rounds of

unequal recombination events, which resulted in promoter

fusion and LRR expansion that contributed to the broad-

spectrum resistance (Wang et al. 2021). More importantly,

Rps11 alone can defeat 127 isolates (80% of all tested

isolates) widely distributed across the USA (Ping et al.

2016; Wang et al. 2021). It is expected that commercial

soybean varieties carrying the Rps11 gene will soon be

available in the market.

In Phytophthora studies, pathogen inoculation methods

to assess populations could also influence the outcome; For

instance, hypocotyl inoculation has been a standard method

to detect vertical resistance and is a premier step to exclude

the influence of potential R genes before detecting hori-

zontal resistance (Dorrance et al. 2018). On the other hand,

the most commonly used methods to detect horizontal

resistance to P. sojae are layer test and tray test which were

based on colonized substrate to deliver the pathogen to the

plant tissue (Dorrance et al. 2008; Wang et al. 2012). More

recently, a hydroponic assay was developed that can detect

both vertical and horizontal resistance through infection of

soybean root system with zoospores (Lebreton et al. 2018).

Different phenotypic traits can be collected including

lesion size, root mass, shoot biomass, root scores, and
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corrected dry weight (CDW) (Dorrance et al. 2008; de

Ronne et al. 2020, 2021). Twenty-one validated QTLs were

stably identified in at least two independent studies

(Table 5). These QTLs were distributed on 13 soybean

chromosomes and may be of high priority to develop

soybean varieties with horizontal resistance against P.

sojae. Notably, qRps18-01 (formerly named QDRL-18 or

OH-18–1), a major QTL conferring more than 20% of

horizontal resistance (Lee et al. 2014; Karhoff et al. 2019;

Rolling et al. 2020), as well as other newly identified

QTLs, are being integrated into future soybean varieties

through collaborated efforts. Moreover, more than 130

additional QTLs were also reported which provided diverse

options for soybean breeders (Supplementary Table 1).

With respect to other Phytophthora species, P. san-

someana E.M. Hansen & Reeser is an emergent pathogen

in soybean-producing areas and causes root rot diseases.

Lin et al. (2021) identified and validated two QTLs that

contributed horizontal resistance to this pathogen from

improved soybean varieties developed at the Michigan

State University soybean breeding program (Table 5).

Marker-assisted resistance spectrum analysis indicated five

patterns of interactions between QTLs and P. sansomeana

isolates. The validated QTLs can be efficiently integrated

into future soybean varieties using MAS with low linkage

drag of undesirable agronomic traits, since both donor

parents are improved soybean varieties.

Pythium damping-off and root rot

The genus Pythium is typically linked with early-season

diseases, such as seedling root rot and damping-off, and

multiple species have been implicated (Zhang et al. 1998;

Zhang and Yang. 2000). Among the most damaging spe-

cies, P. aphanidermatum, P. ultimum, P. irregulare, and P.

sylvaticum have been used to screen potential sources of

resistance for breeding efforts to reduce the impact of these

pathogens (Ellis et al. 2013b; Scott et al. 2019; Lin et al.

2020; Clevinger et al. 2021). Horizontal resistance is cur-

rently the only type of resistance identified for most

Pythium species, except Rpa1, which was identified from

cv. ‘Archer’ as a single dominant resistance gene against P.

aphanidermatum (Table 6) (Cianzio et al. 1991; Kirk-

patrick et al. 2006; Bates et al. 2008; Rosso et al. 2008).

The Rpa1 gene is located on Chr. 13 (molecular linkage

group F, MLG F), 10.6 cM and 26.6 cM from the SSR

markers Satt510 and Satt114, respectively (Rosso et al.

2008). In addition to Rpa1, two QTLs were identified for P.

aphanidermatum from Archer, which were located on

chromosomes 4 and 7, and accounting for 8.29–13.85%

and 4.5–13.85% of phenotypic variations, respectively

(Urrea et al. 2017). Moreover, Archer also confersT
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resistance to seed rot and root discoloration caused by P.

ultimum and other species of Pythium including Phytopy-

thium. vexans (formerly Pythium vexans), P. irregulare,

and hyphal swelling (HS) group (Bates et al. 2004, 2008;

Kirkpatrick et al. 2006; Rupe et al. 2011), yet the genes/

QTLs conferring those resistances in Archer are unclear.

Horizontal resistance was also identified for other

Pythium spp. Lin et al. (2020) identified and validated two

QTLs for P. sylvaticum using QTL mapping and GWA

methods. The two QTLs were located on chromosomes 10

and 18 and explained 9.8–11.2% and 9.3–11.3% of phe-

notypic variations, respectively. Remarkably, pleiotropic

QTLs have been frequently identified for resistance to

several Pythium species or varieties. For example, Scott

et al. (2019) identified one QTL on Chr. 3 for resistance to

P. ultimum var. ultimum and P.ultimum var. sporangi-

iferum, and other two QTLs (on chromosomes 13 and 17,

respectively) that both confer resistance to P. irregulare

and P. ultimum var. ultimum. In a more recent study, a

major QTL was identified (nearest marker

Gm08_8695745_A_C) conferring resistance to P. irregu-

lare (16.7–24.1% of phenotypic variations), P. sylvaticum

(4.9–21.4%), and P. torulosum (66.6%), and another large

effect QTL (nearest marker Gm06_31863080_C_T) for

resistance to P. sylvaticum (26.2–26.9%) and P. irregulare

(6.1–26.6%) (Clevinger et al. 2021). In the future, these

validated and pleiotropic QTLs will be of high priority in

MAS to develop soybean varieties with tolerance to dif-

ferent Pythium pathogens.

Downy mildew

Soybean downy mildew, caused by Peronospora man-

shurica (Naum.) Sdy., is a common leaf disease throughout

the world (Lim et al. 1989). Although severe yield loss is

rarely reported, soybean downy mildew can reduce the size

and quality of soybean seeds (Palmer et al. 2004; Taguchi-

Shiobara et al. 2019). Three resistance genes, Rpm1, Rpm2,

and Rpmx, have been reported from soybean varieties

‘Kanrich’, ‘Fayette’, and PI 88,788, and ‘AGS129’,

respectively, although the genetic and physical location of

the resistance genes remain unclear (Geeseman et al.

1950ab, Bernard and Cremeens 1971; Lim et al. 1984; Lim

1989; Chowdhury et al. 2002). Recently, quantitative

resistance to soybean downy mildew was first reported in

Japan (Taguchi-Shiobara et al. 2019). Remarkably,

QRpm3-1 and QRpm7-1 were identified and confirmed in

several mapping populations across multiple years, each

explaining 18–72% and 28–91% of the observed pheno-

types (Table 7).

Section III. Soybean resistance to fungal
diseases

Sudden death syndrome and Fusarium wilt
and root rot

In the USA, Sudden Death Syndrome (SDS) was initially

detected in the State of Arkansas in 1971 (Rupe and

Weidemann 1986; Rupe 1989) and has since spread to the

majority of soybean producing states (Hartman et al. 2016).

In recent years, SDS has been detected in South Dakota

(Tande et al. 2014), New York (Cummings et al. 2018),

and North Dakota (Nelson et al. 2018). In Brazil, it was

first observed in 1981/82 in the State of Minas Gerais

(Nakajima et al. 1996). It received the name of red root rot

(PVR), as it is still known in that country. This important

disease also occurs in Argentina (Ploper 1993), Canada

(Anderson and Tenuta 1998), Bolivia (Yorinori 1999),

Paraguay (Yorinori 2002), and Uruguay (Ploper et al.

2003).

The major causal agent of SDS identified in the USA is

the fungus Fusarium virguliforme O’Donnell and T. Aoki

(formerly F. solani (Mart.) Sacc. f. sp. glycines) (Aoki

et al. 2003), although a recent study reported that F. Bra-

siliense also causes SDS in the USA (Wang et al. 2019).

SDS and F. virguliforme were also reported in Malaysia

(Chehri et al. 2014) and South Africa (Tewoldemedhin

et al. 2014). In Brazil, four fungi have been reported to

cause SDS, including F. virguliforme, F. brasiliense, F.

crassistipitatum, and F. tucumaniae. In addition, F. brasi-

liense, F. crassistipitatum, and F. tucumaniae have been

reported to cause SDS in other countries in South America

(Aoki et al. 2003, 2005, 2012).

Significant yield losses can occur due to SDS (Aoki

et al. 2003). SDS favors cool and wet environment. The

symptoms of SDS can be observed on the roots and the

aboveground foliage. The fungus initiates its infestation by

colonizing the soybean roots, causing root rot and necrosis,

which leads to the loss of root mass and root nodules. The

fungus may sporulate on the roots producing clusters of

conidia that appear to be blue. The aboveground symptom

of SDS is caused by the translocation of phytotoxin, the

symptoms include interveinal chlorosis and necrosis; leaf

abscission at the top of the petiole rather than the base; and

eventually, early plant death. Foliage symptoms are gen-

erally observed in the later reproductive stages after flow-

ering but may develop earlier (Roy et al. 1997; Aoki et al.

2003; Hartman et al. 2016; Chang et al. 2018).

Cultural practices and planting resistant varieties are the

most common methods used to manage SDS (Wrather et al.

1995; Luckew et al. 2012). The soybean community has

devoted substantial effort to identifying QTLs that underlie
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SDS resistance. To date, more than 200 resistance-associ-

ated markers have been identified (Table 8 and Supple-

mentary Table 2). After mapping a resistance locus, it is

important to confirm and incorporate it into multiple

genetic backgrounds to determine whether it will maintain

its effect and be useful in a breeding program. Based on the

classification of Chang et al.(2018) as well as the studies

thereafter, twenty-five confirmed QTLs have been identi-

fied from at least two independent studies (Table 8),

including a single locus on chromosomes 2, 4, 5, 8, 9, 14,

16, and 19, two on chromosomes 3, 13, 15 and 17, and

three on chromosomes 6, 18, and 20. Most of these loci

were confirmed in at least one field study, except qRfv06-

03, which was confirmed in three greenhouse studies

(Abdelmajid et al. 2012; Bao et al. 2015; Luckew et al.

2017), and qRfv20-03, which was validated in a greenhouse

study and a growth chamber study (Swaminathan et al.

2016; de Farias Neto et al. 2007). Notably, qRfv05-01

confers resistance to both F. virguliformes and F. tucu-

maniae, a causal agent of SDS in South America. Ninety

additional loci were also reported and may need confir-

mation in future studies (Supplementary Table 2). The

confirmed QTLs can be pyramided into elite cultivars with

high confidence for durable resistance. There are no reports

on genetic mechanisms of the genes but, stacking the two

distinct SDS resistance mechanisms, resistance to root rot

and leaf scorch is the better strategy to increase resistance

(Wang et al. 2016).

In addition to SDS, other Fusarium spp. pathogens (such

as F. redolens, F. proliferatum, F. oxysporum, F. equiseti,

F. acuminatum, F. moniliforme, F. graminearum, F.

semitectum, F. chlamydosporum, F. compactum, F. meri-

moides, F. roseum, F. tricinctum, F. avenaceum, and F.

sporotrichioides) can also infect soybean, causing wilt,

damping-off, and root rot (Arias et al. 2013). Of these

Fusarium spp., F. graminearum was highly aggressive

(root rot severity[ 90%), causing seed rot and seedling

damping-off in South America, Canada, and the USA (Pioli

et al. 2004; Broders et al. 2007; Xue et al. 2007; Ellis et al.

2013a; Arias et al. 2013; Cheng et al. 2017a). Horizontal

resistance is the only type of resistance so far identified for

F. graminearum. Since the first report of five QTLs from

‘Conrad’ and ‘Sloan’, a total of thirty QTLs have been

identified, accounting for 3.1–40.2% of phenotypic varia-

tions on 13 soybean chromosomes (Table 9). Based on the

physical locations of the tightly linked or flanking markers,

five loci can be validated from two or more QTL mapping

or GWA studies, including qRfg08-01 (17.2–47.4 Mb) and

qRfg08-02 (4.0–9.2 Mb) on Chr. 8, qRfg13-01

(11.1–39.3 Mb) on Chr. 13, and qRfg19-01 (47.5–47.8 Mb)

and qRfg19-02 (9.2–41.3 Mb) on Chr. 19 (Table 9). These

QTLs can be of higher interest to develop resistant soybean

varieties against F. graminearum.T
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Stem canker/Phomopsis seed decay

The Diaporthe/Phomopsis complex, the genus Diaporthe

Nitschke (asexual morph Phomopsis) (Sacc.) comprises

several species of fungi causing important diseases in

soybean: northern and southern stem canker, Diaporthe

seed decay, and pod and stem blight (Santos et al. 2011).

This complex is dispersed worldwide resulting in greater

yield losses in soybean than any other single fungal

pathogen (Sinclair 1993). Phomopsis seed decay (PSD) is

mainly caused by Phomopsis longicolla (D. longicolla),

while soybean stem canker (SSC) is primarily caused by

two different species, D. aspalathi (E. Jansen, Castl. &

Crous) (syn. Diaporthe phaseolorum var. meridionalis) and

D. caulivora (Athow & Caldwell) J.M. Santos, Vrandecic

& A.J.L. Phillips (syn. Diaporthe phaseolorum var. cauli-

vora) (Fernández et al. 1999; Pioli et al. 2003; Santos et al.

2011; Udayanga et al. 2015) and D. sojae is the cause of

pod and stem blight (Udayanga et al. 2015). Recently, D.

gulyae, D. bacilloides, and D. ueckerae have also been

associated with soybean diseases (Mathew et al. 2018;

Petrović et al. 2021).

Northern stem canker (caused by D. caulivora) was first

observed in the late 1940s in the northern USA (Athow and

Caldwell 1954) and resulted in severe yield losses in the

mid-1950s. Hildebrand (1956) developed a greenhouse

assay for stem canker which involved growing the fungus

on sterilized wooden toothpicks and inserting the tooth-

picks into the soybean stems. Susceptible cultivars develop

a canker and die, while resistant cultivars do not develop a

canker symptom. Hildebrand noted that seedlings of

‘Hawkeye’ and ‘Blackhawk’ appeared resistant when

inoculated, became susceptible at mid-stage, and then grew

increasingly resistant as the plants matured. In the late

1990s, northern stem canker emerged as an important

disease in the northern USA and Ontario, Canada (Wrather

et al. 2003a). Thickett et al. (2007) developed a cut stem

assay by placing inoculum on the cut surface of seedling

stems which were severed above the unifoliate leaves.

After two weeks, the length of the lesions was longer on the

susceptible cultivars, and results agreed with field obser-

vations. To date, little has been done to elucidate the

genetic resistance to D. caulivora.

Southern stem canker (caused by D. aspalathi) was first

reported in the 1970s causing an estimated loss of $37

million in 1983 (Backman et al. 1985; Weaver et al. 1988).

Initially identified as D. phaseolorum var. caulivora,

southern isolates were noticeably different from northern

isolates in culture (McGee and Biddle 1987). The name of

the fungus was changed to D. phaseolorum var. merid-

ionalis and is now D. aspalathi (Rensburg et al. 2006;

Santos et al. 2011). Southern stem canker begins as a

canker on the lower stem during mid-reproductive devel-

opment (Weaver et al. 1988; Rupe 2016). The canker

grows on one side of the stem but does not girdle the stem

producing a toxin that results in distinctive foliar symptoms

before prematurely killing the plant. Consistent cultivar

reactions to southern stem canker were observed in the

field, but the occurrence of the disease varied from year to

year. Keeling (1985) reported that cultivar responses to

inoculating 10-day-old seedlings with infested toothpicks

were in good agreement with field ratings. The toothpick

inoculation method was later used on 60-day-old field

plants and compared to inoculating the plant with ascos-

pores. Both methods consistently produced stem canker

symptoms and were able to identify cultivar responses

from very susceptible to very resistant (Keeling 1988).

Single dominant resistance genes to southern stem canker

were reported from the cultivar ‘Tracy-M’, Rdc1 and Rdc2

(later renamed Rdm1 and Rdm2, respectively) (Kilen and

Hartwig 1987), in ‘Crockett’, Rdc3 (later renamed Rdm3),

and in ‘Dowling’, Rdc4 (later renamed Rdm4) (Bowers

et al. 1993) (Table 10). Rdc4 was also found in the cultivar

‘Hutcheson’ (Tyler 1996). Initially, all these genes

appeared to be equally effective against all isolates of D.

aspalathi (Keeling, 1988), but a report from Argentina

isolates of D. aspalathi were found virulent on one or more

of each of these genes (Pioli et al. 2003). Interestingly, they

found a number of isolates of D. aspalathi that were vir-

ulent on lines with Rdc1 and lines with Rdc2 but were

avirulent on Tracy-M which has both Rdc1 and Rdc2.

Moderate levels of resistance to southern stem canker have

been reported from the field and greenhouse inoculations,

but the genetic nature of that resistance has not been

explored.

Phomopsis seed decay

Phomopsis seed decay (PSD) of soybean is the major cause

of poor seed quality and significant yield loss in most

soybean-growing regions (Sinclair, 1993). PSD is favored

by hot and humid environmental conditions and is usually

worse with early maturing cultivars planted early in the

season. Severe symptoms are shriveled, elongated, or

cracked, chalky appearance, but seed infection is usually

symptomless. These symptomless infections can result in

pre- and post-emergence damping-off (Sinclair 1993; Kulik

and Sinclair 1999; Koenning 2010). Resistance to PSD has

been reported in PI 82,264 (Walters and Caviness 1973), PI

181,550 (Athow 1987), the cultivar ‘Delmar’ (Crittenden

and Cole 1967; Brown et al. 1987), PI 200,501, and

‘Arksoy’ (Ross 1986), and in PI 80,837, PI 417,479, and PI

360,841 (Brown et al. 1987) (Table 10). PI 417,479 was

reported to have two dominant genes for resistance to PSD,
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one located on linkage group F and one on linkage group H

(Zimmerman and Minor 1993). The PSD resistant line,

‘MO/PSD-0259’ was developed from PI 417,479 (Elmore

et al. 1998; Minor et al. 1993). MO/PSD-0259 was used to

develop two PSD resistant lines, ‘SS 93–6012’ and ‘SS

93–6181’ (Wrather et al. 2003b). The resistance in PI

80,837 was determined to be conferred by a single domi-

nant gene that is different from the one in MO/PSD-0259

(Jackson et al. 2005). A genetic study using a greenhouse

inoculation method with progenies derived from a cross

between the resistant cultivar ‘Taekwangkong’ and the

susceptible cultivar ‘SS2-2’ reported two QTLs associated

with PSD resistance which were tightly linked with genes

for maturity (Sun et al. 2013). Many PIs in maturity groups

III, IV, and V were identified as resistant to PSD across

three states (Li et al. 2010a). Resistance to PSD was

identified in six commercial cultivars in inoculated and

non-inoculated tests (Li et al. 2017a). In a study evaluating

the response of PIs to purple seed stain (PSS), nine PIs with

resistance to PSS were also resistant to PSD (Li et al.

2019). PI 80,837 also has resistance to both PSS and PSD

(Jackson et al. 2005, 2006). A cut stem seedling assay

similar to that described for inoculations with D. caulivora

by Thickett et al. (2007) was used with D. longicolla (Li

2018). This method gave similar results as field tests. A

draft genome sequence for D. longicolla has been pub-

lished (Li et al. 2015a, 2017a), and the glycoside hydrolase

subnetwork appears to be important in pathogeneses (Li

et al. 2018).

Numerous management practices can be applied to

control PSD, including deep tillage, crop rotation with non-

legume crops, treating seeds with fungicides, and applying

fungicides during pod-fill. To date, the most effective

management option is the use of resistant cultivars (Park

1991; Roy et al. 1994; Jackson et al. 2005; Pathan et al.

2009; Mengistu et al. 2010). A report by Sun et al. (2013)

identified two QTLs for PSD resistance associated with

days to maturity in soybean (Table 10). This was an

important discovery because early maturing soybean

genotypes are often highly susceptible to PSD due to the

weather conditions during pod and seed development.

Several screening methods have been used to identify

sources of resistance, including those mentioned above for

stem canker, seed plate assay (Li et al. 2011), and cut-stem

inoculation method.

Sclerotinia stem rot

Sclerotinia stem rot (or white mold), caused by Sclerotinia

sclerotiorum (Lib.), can cause significant yield losses in

soybean and overall reduction of seed quality in North

Central USA and northeastern China under conducive coolT
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and wet weather conditions (Hoffman et al. 1998; Kurle

et al. 2001; Peltier et al. 2012; Sun et al. 2020). For

example, in 2004 and 2009, Sclerotinia stem rot caused

yield losses of 1.63 and 1.61 million Mt, respectively, in

the USA alone (Peltier et al. 2012). More recently, over

1.08 million Mt of production losses were recorded in 2014

in the North Central USA and Ontario, Canada (Allen et al.

2017). The disease steadily ranked among the top 10 most

destructive diseases associated with yield losses in the

northern USA and Ontario, Canada (Allen et al. 2017).

Horizontal resistance is the only type of soybean resis-

tance identified for Sclerotinia stem rot. The first report for

horizontal resistance identified three minor QTLs (ex-

plaining 6.5–9.6% of phenotypic variations) on linkage

groups M, K, and C2 using a bi-parental population of 152

F3 derived RILs (Kim and Diers 2000). More recently, the

assembly of the soybean reference genome and advance-

ments in GWA have enabled more accurate dissection of

genomic regions associated with resistance to Sclerotinia

stem rot (Schmutz et al. 2010). For example, Bastien et al.

(2014) identified four significant markers for resistance,

which were located at chromosomes 1, 15, 19, and 20,

explaining 6.3–14.5% of phenotypic variations. The locus

on Chr. 15 (renamed qRss15-01 in this review) was further

validated in an F4:5 RIL population where significantly

shorter lesions were observed for 24 resistant genotypes. In

another GWA study, a major locus was identified and

validated on Chr. 13 (Qswm13-1, and renamed qRss13-01

in this review), which explained 23.33% of phenotypic

variations (Zhao et al. 2015). From 2014 to 2021, a total of

nine GWA studies have been published (Bastien et al.

2014; Iquira et al. 2015; Zhao et al. 2015; Wei et al. 2017;

Wen et al. 2018; Boudhrioua et al. 2020; Sun et al. 2020;

Jing et al. 2021; Zou et al. 2021). Combining the studies of

QTL mapping and GWA, 14 loci have been validated from

at least two mapping studies (Table 11). The 14 loci were

distributed at 11 chromosomes (1, 4, 6, 8, 9, 10, 12, 13, 15,

17, and 19) and contributed as high as 32% of the phe-

notypic variations. These validated loci may be of high

priority for soybean breeders to use for improving partial

resistance to Sclerotinia stem rot. In addition to the vali-

dated QTLs, more than 200 QTLs have also been identified

and may be validated in the future (Supplementary

Table 3),

Soybean rust

Asian soybean rust (ASR) caused by Phakopsora pachyr-

hizi (Sydow. & Sydow.) is one of the most destructive

diseases in soybean. When environmental conditions are

conducive for disease development, ASR spreads fast,

causing severe crop damage, leading to significant seedT
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quality reduction and yield losses of as much as 80%

(Yorinori et al. 2005). Losses vary upon weather condi-

tions, genotype, and the maturity stage at the time of

infection (Wang and Hartman 1992) and are mainly

attributed to premature leaf fall, reduced green leaf area in

the canopy, reduced dry matter accumulation and reduced

harvest index (Kumudini et al. 2008). Soybean rust can

also be caused by P. meibomiae, which resembles P.

pachyrhizi in both symptoms and spore appearance. Yet the

rust caused by P. meibomiae occurs mainly in South and

Central America and causes little damage on soybean. This

review will be focused on ASR.

ASR is primarily diagnosed with a magnifying glass or

microscope, but the polymerase chain reaction (PCR)

reaction is also useful when sporulating pustules are not

visible (Frederick et al. 2002). The key feature of ASR is

the appearance of uredinia and urediniospores. Therefore,

it is recommended that infected leaf samples be incubated

in a humid chamber and left overnight to enhance rust

development and sporulation for accurate diagnosis.

Many management strategies have been proposed to

control ASR, including cultural practices, nutrition man-

agement, biological and fungicide applications, and host

genetic resistance (Tadesse 2019). The application of

fungicides is the preferred management tool used by

farmers in regions where ASR is prevalent, but it increases

production costs and environmental footprint. Since host

plant resistance appears as an affordable method for

managing ASR, considerable efforts have been directed

toward screening soybean germplasm for resistance to P.

pachyrhizi and the development of resistant cultivars.

Resistance to ASR

Screening for reaction to ASR can be carried out in the

field, in locations where the presence of inoculum and

environmental conditions are appropriate for disease

development, or in the greenhouse with controlled inocu-

lations and incubation at high relative humidity (Childs

et al. 2018a). In the latter case, it is necessary to collect and

maintain the P. pachyrhizi isolates to be used in the inoc-

ulations. Spores can be stored in sub-zero freezers, but, as

an obligate parasite, inoculum must be produced on living

soybean seedlings.

Resistance to ASR in soybean plants is evaluated based

on the presence or absence of lesions, color of the lesions,

number of uredinia per lesion, and level of sporulation

(Bromfield 1984). More recent studies have evaluated

resistance using quantitative traits (Bonde et al. 2006;

Walker et al. 2011; 2014). During a compatible interaction

in a susceptible soybean plant, abundant sporulation and

tan lesions occur, whereas in incompatible interactions

(resistance), lesions are reddish-brown (RB) with less

sporulation. Immune reactions (IM) have also been

observed without visible lesions (Bromfield, 1984).

However, it has been pointed out that the number of

uredinia per lesion and the level of sporulation are not

necessarily correlated with the color of the lesion (Yama-

naka et al. 2015a). Yamanaka et al. (2010) analyzed five

traits including lesion color, the number of uredinia per

lesion, frequency of lesions that had uredinia, frequency of

open uredinia, and level of sporulation, and observed high

correlations between all the traits except the color of the

lesion. In this sense, Yamanaka et al. (2016) selected the

number of uredinia per lesion, the frequency of lesions that

had uredinia, and the level of sporulation to assess the

degree of resistance.

Resistance or susceptibility studies focus on under-

standing the defensive response. To date, eight major

resistance genes (Rpp1-7, Rpp1-b) have been mapped

(Table 12) (Childs et al. 2018b; Hossain 2019). But these

Rpp gene-mediated resistances against ASR have been

overcome in nature several times. For example, the soy-

bean resistance provided by Rpp1 and Rpp3 was defeated

by the P. pachyrhizi MT isolate only two years after ASR

was first detected in Brazil (Pierozzi et al. 2008).

The improvement effort to know the physical location of

the Rpp genes (resistance to P. pachyrhizi) is a great

challenge today. However, despite the publication of the

soybean genome (Schmutz et al. 2010), no Rpp gene has

yet been cloned. For this reason, other authors have tried to

identify the candidate genes linked to the Rpp3 gene

through a massive transcriptomic approach, using NILs

populations. These genes are mostly related to phenyl-

propanoid branch isoflavonoid pathway-specific phy-

toalexin, glyceollin biosynthesis (Hossain 2019).

The presence of multiple virulence genes in the patho-

gen population and the lack of multiple resistance genes in

the host give the soybean rust pathogen a competitive

advantage. Therefore, the deployment of specific single

genes for resistance is unlikely to be a successful strategy

(Jarvie 2009).

Although varieties with pathotype-specific resistance

genes were released, the stability of this resistance is

uncertain since the large number of races of this fungus

already described demonstrates the great variability of the

pathogen. Understanding the molecular mechanisms

involved in defense responses is of primary importance to

plan strategies to control stress and, consequently, to

increase the adaptation of plants to limiting conditions.

Molecular markers have been considered tools for a large

number of applications ranging from the location of a gene

to the improvement of plant varieties through MAS. Also,

the analysis of the soybean genome has generated a large

amount of information and several databases with
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molecular markers are being generated that could be used

for genetic improvement (Vuong et al. 2016; Tadesse

2019).

Strategies for ASR resistance

The introgression of vertical resistance through classical

breeding followed by MAS allows the development of

resistant varieties and their use as an efficient and cost-

effective method to control soybean rust (Tadesse 2019).

An example to highlight is the pyramiding of several Rpps

genes in a single line. Yamanaka et al. (2015a, b) managed

to develop highly resistant experimental lines with stacks

of three genes: Rpp2 ? Rpp3 ? Rpp4 and

Rpp2 ? Rpp4 ? Rpp5.

Pathotype-specific resistance genes and molecular

markers are known to facilitate selections. However, the

resistance provided by major genes tend to be broken

rapidly; thus, research should be focused on the role of

quantitative minor genes (QTLs) which are more likely to

provide durable resistance to this highly variable pathogen.

To date, only one attempt to enhance resistance ASR

based on transgenic technology has been recorded (Soto

et al. 2020). In this study, constitutive expression of the

NmDef02 gene from Nicotiana magalosiphon demon-

strated significantly increased resistance in soybean against

Phakopsora pachyrhizi in field experiments.

The most recent and novel attempt to control this dis-

ease is the treatment of liquid suspension of cellulose

nanofibers (CNF) to plants before inoculation with the

pathogen. The authors suggest that this application changes

the hydrophobicity of the leaf surface, suppressing P.

pachyrhizi CHSs (chitin synthases) expression related to

chitin formation, which are associated with reduced for-

mation of pre-infection structures (Saito et al. 2021).

Frogeye leaf spot, Cercospora leaf blight
and purple seed stain

There are three soybean diseases caused by Cercospora

spp.: frogeye leaf spot (FLS), Cercospora leaf blight

(CLB), and purple seed stain (PSS). FLS, caused by C.

sojina Hara, is an important foliar disease in soybean in the

USA, Brazil, and China (Laviolette et al. 1970; Bernaux

1979; Dashiell and Akem 1991; Akem and Dashiell 1994;

Ma 1994; Mian et al. 1998). Symptoms start on leaves as

small, light brown circular spots which develop into a

darkish brown to reddish margin (Dashiell 1991). In

addition to foliar symptoms, C. sojina can cause lesions on

pods and infect soybean seeds. FLS is favored by warm

temperatures and frequent rainfalls (Phillips 1999) and

remains active throughout the growing season (Laviolette

et al. 1970; Kim et al. 2013), which make FLS a major

disease in the southern USA as well as in some regions of

the Midwestern USA (Yang et al. 2001; Mengistu et al.

2002; Mian et al. 2008). Yield losses can range from 10 to

60% mainly due to the reduction in photosynthesis and leaf

area by necrotic lesions and/or premature defoliation

(Laviolette et al. 1970; Bernaux 1979; Dashiell and Akem

1991; Akem and Dashiell 1994; Ma 1994; Mian et al.

1998). Screening methods for FLS include field evaluations

with natural inoculum or with inoculations, and greenhouse

inoculations of seedlings (Mian et al. 2008; Mengistu et al.

2012). Mian et al. (2008) proposed a set of 12 differential

cultivars to determine races of C. sojina. With these dif-

ferentials, they described 11 races from a collection of 93

C. sojina isolates collected in the USA. Three resistance

genes (Rcs, Resistant to C. sojina) have been identified

including Rcs1, Rcs2, and Rcs3 (Table 13) (Athow and

Probst, 1952; Athow et al. 1962; Phillips and Boerma

1982). Rcs3 appears to confer resistance to all known races

of C. sojina in the USA. Rcs3 was further fine mapped on

Chr. 16 (MLG J) (Mian et al. 1999; Missaoui et al.

2007a, b). In recent years, Rcs(PI 594,891) and Rcs(PI

594,774) were fine mapped and approved by the Soybean

Genetic Committee as QTL that confers resistance to FLS

(Hoskin 2011; Pham et al. 2015); In addition, two major

QTLs were mapped on chromosomes 6 and 8, respectively,

conferring resistance to C. sojina race 2 (ATCC 44,531)

(Sharma and Lightfoot 2014); Rcs15-02 was mapped on

Chr. 6 (MLG C2); the ss715594329—ss715594474 interval

was mapped on chromosome 6 (MLG C2) (Smith 2021);

the ss715610717—ss715610843 interval was mapped on

chromosome 11 (MLG B1)(Smith 2021); the

ss715614578—ss715615158 interval was mapped on

chromosome 13 (MLG F) (McAllister et al. 2021); and

Rcs15-01 was mapped on Chr. 19 (MLG L) (Lee 2021).

CLB and PSS are two closely related diseases caused by

the same or similar pathogens. The causal agent of both

CLB and PSS was identified as Cercospora kikuchii

(Matsumoto & Tomoyasu) M. W. Gardner (Matsumoto and

Tomoyasu 1925; Walters 1980); however, recent studies

have found C. flagellaris and C. sigsbeckiae were the pri-

mary species associated with both diseases in the southern

USA. CLB begins as a purpling of the upper leaves starting

during seed development. This purpling can cover the

entire leaf surface. Symptoms can advance to blighting

where the entire leaf becomes chlorotic and necrotic with

the leaflets falling off leaving the petioles attached. The

pathogen produces a toxin, ‘cercosporin’, whose produc-

tion requires light exposure. As a result, CLB symptoms

begin at the upper end top of the plant and progress to the

lower leaves. In severe cases, the whole plant may be

defoliated. Yield losses for PSS have been estimated at

0.12–0.28 million Mt (Allen et al. 2017) whereas CLB
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causes an estimated yield loss of 23% in the USA (Wrather

et al. 1997). On seed, infection causes a purpling of the

seed coat. Seed infection is usually not associated with

yield loss but can reduce seed germination and may lead to

infected seedlings. Although both CLB and PSS are

favored by high moisture and warm temperatures during

early pod development (Jones 1968; Schuh 1990), the

occurrence of these diseases appears to be independent of

each other (Orth and Schuh, 1994; Walters 1985).

Based on natural field inoculum, Srisombun and Supa-

pornhemin (1993) reported resistance to PSS in the soy-

bean cultivar ‘SJ2’ and that this resistance may be due to a

single dominant gene. Resistance to PSS was also reported

in PI 80,837, PI 417,274, PI 417,460, and the cultivar

‘Gnome’ (Wilcox et al. 1975; Ploper et al. 1992). The

resistance in PI 80,837 was attributed to a single gene on

linkage group G, Rpss1 (Jackson et al. 2006, 2008)

(Table 13). Additional PIs were identified as resistant

sources to both CLB and PSS (Alloatti et al. 2015) or only

to PSS (Li et al. 2019). Several studies of population

genetics have found differences in genetic structure among

populations and pathogenicity of groups throughout the

Americas (Almeida et al. 2005; Cai et al.2009; Lurá et al.

2011). It is unknown if the reactions of these soybean lines

to CLB and PSS will remain consistent with the new

species of Cercospora associated with these diseases.

Charcoal rot

The worldwide distributed charcoal rot disease of soybean

is caused by Macrophomina phaseolina (Tassi) Goid

(Smith and Wyllie 1999). M. phaseolina is a soilborne

plant pathogen causing disease infection in more than 500

plant species (Su et al. 2001; Mengistu et al. 2007).

Charcoal rot is one of the primary diseases of soybean in

the USA and Canada (Bandara et al. 2020; Roth et al.

2020) resulting estimated yield losses between 0.73 and 2.0

million Mt from 2010 to 2014 (Allen et al. 2017). Disease

severity is favored by the increase in soil and air temper-

ature (28–35 �C) (Mengistu et al. 2014), and symptoms

include stunted growth, leaf chlorosis, premature yellowing

and early maturation, or incomplete pod filling (Gupta et al.

2012; Mengistu et al. 2016). Management strategies

include crop rotation with non-host crops, such as cotton,

wheat, and barley that can lower inoculum load in the soil,

and avoidance of water stress especially during the repro-

ductive stage of soybeans. (Almeida et al. 2003; Garcı́a-

Olivares et al. 2012; Vibha 2016). Biological control with

Trichoderma isolates has been proposed by researchers as a

possible alternative to control charcoal rot (Khalili et al.

2016; Orojnia et al. 2021). However, host plant resistance

is the most viable method to control the disease (Mengistu

et al. 2011; Coser et al. 2017). Little is known regarding

the genetics and heritability of the pathogen and there is a

lack of reliable and efficient screening method for this

disease (Mengistu et al. 2008). Until 2018, no soybean

genotype having a high level of resistance toM. phaseolina

had been identified (Mengistu et al. 2018). Recently, a

report by Nataraj et al. (2019), summarized eleven soybean

genotypes identified as moderately resistant to charcoal rot

along with pedigree information. Reznikov et al. (2019)

found that cv. ‘Munasqa RR’ carried superior resistance to

M. phaseolina. In addition, the University of Missouri-

Fisher Delta Research Center has released varieties show-

ing superior resistance to charcoal rot (Chen et al.

2020, 2021b). Based on field research studies conducted

over the last several years, over 2,000 soybean genotypes

have been screened for CR resistance, and of these geno-

types, approximately 25 have been identified as having

moderate resistance against charcoal rot (Mengistu et al.

2007, 2011, 2013). Recently, Mengistu et al. (2021)

screened a set of 120 soybean accessions known to have

resistance to one or more races of SCN. Twelve of these

accessions have been identified to have moderate charcoal

rot resistance combined with resistance to SCN. These

accessions are archived and will be available through the

Germplasm Resources Information Network (GRIN) sys-

tem of the USDA. Even though moderately resistant cul-

tivars have been identified, the lack of identifying a

complete resistance has delayed the progress to better

understanding the genetics of resistance. Most of those

genotypes were screened using at least one of the six

screening methods for the disease assessment including:

colony-forming unit index (CFUI); root stem severity

(RSS); percent height of stem discoloration (PHSD); foliar

symptoms (FS); cut-stem inoculation method; and seed

plate assay (SPA) (Mengistu et al. 2007; Twizeyimana

et al. 2012; da Silva et al. 2019). Of all these methods,

CFUI and RSS have been the stay methods for charcoal rot

assessment currently used in the field.

Recently, QTL mapping and GWA studies were repor-

ted on multiple genomic regions harboring horizontal

resistance to charcoal rot in soybean, which may be used to

facilitate breeding and MAS against this pathogen

(Table 14) (Coser et al. 2017; da Silva et al. 2019, 2020;

Ghorbanipour et al. 2019). More efforts are needed to

identify complete resistant sources and develop tightly

linked molecular markers to facilitate breeding resistant

varieties.
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Brown stem rot

Brown stem rot (BSR) is a devastating soybean disease

caused by a soilborne fungus, Phialophora gregata (syn.

Cadophora gregata), which was first discovered in central

Illinois in 1944 (Allington and Chamberlain 1948; Har-

rington and McNew 2003). There are two different types of

P. gregata pathogen identified (Type I and II): Type I

causes pith browning and interveinal chlorosis and necrosis

of leaves, but Type II only causes pith browning (Gray

1972; Harrington et al. 2003). The disease caused annual

yield loss of 0.35 million Mt in the Northern USA (Allen

et al. 2017; Klos et al. 2000), and yield reduction can reach

as high as 38% (Bachman et al. 2001). The most effective

strategy to control BSR is the introgression of resistance

genes into soybean cultivars (Klos et al. 2000; McCabe and

Graham 2020). From previous studies, three genes (Rbs1,

Rbs2, and Rbs3) for BSR resistance in soybean have been

identified through allelism tests (Table 15) (Hanson et al.

1988; Willmot and Nickell 1989). Later, it was determined

that all three genetic loci were in an overlapping region of

Chr. 16 (28.9–36.2 Mb) (Lewers et al. 1999; Bachman

et al. 2001). Recently, Rincker et al. (2016a) concluded that

all three loci for BSR resistance were located in the same

region, and that the resistance was conferred by a single

gene based on their fine mapping (Rincker et al. 2016a) and

GWA studies (Rincker et al. 2016b). To evaluate BSR

resistance in soybean, Sebastian et al. (1983) established a

greenhouse root-dip method, which has been modified and

refined by further studies (Hanson et al. 1988; Willmot and

Nickell 1989; Lewers et al. 1999; Bachman et al. 2001).

Soybean PIs that have BSR resistance include PI 84,946–2,

PI 86,150, PI 90,238, PI 95,769, PI 88,820, PI 424285A, PI

424,353, PI 424611A, PI 437,833, and PI 437,970

(Chamberlain and Bernard 1968; Tachibana and Card

1972; Hanson et al. 1988; Nelson et al. 1989; Wilmot and

Nickell 1989).

Rhizoctonia damping-off and root rot

Rhizoctonia damping-off and root rot is an important dis-

ease in soybean and can cause pre- and postemergence

damping-off, seed rot, root rot, hypocotyl lesions, and web

blight (Dorrance et al. 2003; Rahman et al. 2020). The

causal agent, Rhizoctonia solani Kuhn, is a soilborne

necrotrophic complex species that can host corn, soybean,

and other crops such as wheat and potato, suggesting that

management of Rhizoctonia root rot by rotations between

these crops may not be effective (Ajayi-Oyetunde and

Bradley 2017, 2018). The isolates of R. solani can be

classified into 14 anastomosis groups (AGs) and more
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subgroups based on their genetic similarity. Different AGs

may incite different symptoms of disease on soybean. For

example, AG-2-2IIIB, AG-4 and AG-5 can cause seed rot,

pre- and post-emergence damping-off, hypocotyl and root

rot, and foliar blight on soybean, while AG-3, AG-7, and

AG-11 cause very little damage (Ajayi-Oyetunde and

Bradley 2018). The management of Rhizoctonia root rot

may include clean seeds, tillage, fungicides, and deploy-

ment of resistant cultivars if possible. Unfortunately, cur-

rently there is no commercial resistant cultivars available to

the market, and the genetic research against Rhizoctonia

root rot is inadequate. Only three SSR markers, Satt281,

Satt177, and Satt245 (Table 16) have been found associ-

ated with partial resistance to AG-4 isolate (Zhao et al.

2005), although more germplasm lines and soybean vari-

eties have been identified as potential sources of resistance

(Muyolo et al. 1993; Bradley et al. 2001; Sharma 2020).

Other fungal diseases

Taproot decline

Taproot decline is a disease caused by Xylaria necrophora

sp. nov. (Garcia-Aroca et al. 2021), a recently identified

pathogen that was overlooked since some of the symptoms

were similar to other soybean root diseases including SDS

and charcoal rot. This soilborne pathogen can affect

seedlings; however, the symptoms in the field develop later

in the season producing interveinal chlorosis followed by

necrosis. It has been noted that X. necrophora will affect

the root to the point that pulling plants from the ground

causes the root system to break with black stroma visible

on the root tissue (Allen et al. 2017). The disease is mostly

managed with cultural practices, but cultivar trials are

ongoing. The cv. ‘Osage’ (PI 648,270) has tolerance to this

pathogen (Purvis 2019). Osage was developed in Arkansas

and also has resistance to SDS, stem canker, and frogeye

leaf spot (Chen et al. 2007).

Red leaf blotch

Red leaf blotch affects soybean plants in several Eastern,

Central, and Southern African countries. The disease (also

known as Pyrenochaeta leaf spot or blotch, and Dactulio-

phora leaf spot) can cause yield losses of up to 50%

(Hartman et al. 1987, 2016). The causal agent is Conio-

thyrium glycines (R.B. Stewart) Verkley & Gruyter, a

fungus previously named Phoma glycinicola, Dac-

tuliochaeta glycines, Dactuliophora glycines, and Pyr-

enochaeta glycines. The disease affects foliage, petioles,

pods, and stems, and may cause severe leaf blotching,
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defoliation, and premature senescence. Because of the

potential negative consequences of this disease to US

agriculture if introduced, C. glycines is listed as a select

agent by the Federal Select Agent Program (Tooley 2017).

Since the 1980s, soybean germplasm has been evaluated

under field conditions in African countries for reaction to

red leaf blotch. Despite this extensive field testing, no

sources of resistance have yet been identified among US

soybean commercial cultivars, local lines, or exotic soy-

bean lines. These evaluations were carried out in regions

where red leaf blotch is endemic (Sinclair 1989). A field

method to assess the infection of soybean by the pathogen

was developed and used to evaluate cultivar reaction and

efficacy of chemical control (Levy et al. 1990).

A seedling inoculation method has also been proposed

which allows optimal infection in less space over a shorter

period than field trials and without relying on the occur-

rence of natural inoculum and disease conducive environ-

mental conditions. Soybean genotypes that represent nearly

90% of the genes present in US soybean were evaluated

and found to be susceptible, which is consistent with pre-

vious field evaluations (Tooley 2017).

Studies are necessary to evaluate genetic variability

within the pathogen population from different countries,

and to assess potential interactions with soybean geno-

types. With limited genomic information of the pathogens

known, there are no molecular genotyping or detection

methods available. Recently, the draft genome sequences

of three C. glycines isolates were reported, enhancing the

knowledge of this species (Blagden et al. 2019).

Section IV Soybean resistance to bacterial
diseases

Bacterial blight

Soybean bacterial blight caused by Pseudomonas savas-

tanoi pv. Glycinea Coerper (formerly Pseudomonas syr-

ingae pv. glycinea) is a widespread soybean disease.

Although bacterial blight is not a major suppressor of

soybean yield in the USA (Williams and Nyvall 1980;

Hwang and Lim 1992), the interaction between soybean

and the pathogen was well known as a model system to

study gene-for-gene host-parasite relationships (Huynh

et al. 1989). Five resistance genes/alleles have been iden-

tified named Rpg1-b, Rpg1-r, Rpg2, Rpg3, and Rpg4,

conferring resistance to the corresponding Psg avirulence

factors AvrB, AvrRpm1, AvrA, AvrC, and AvrD, respec-

tively (Staskawicz et al. 1987; Keen and Buzzell. 1991;

Ashfield et al. 1998; Khan et al. 2011; Whitham et al.

2016). The Rpg1-b and Rpg1-r genes were located on MLG

F (Chr. 13) (Ashfield et al. 1998) and have been cloned in
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2004 and 2014, respectively (Ashfield et al. 2004, 2014).

Rpg2 is loosely linked with Rpg1, and Rpg3 is linked with

Rpg4 at 40.5 ± 3.2 recombination units (Table 17) (Keen

and Buzzel. 1991).

Bacterial pustule

Soybean bacterial pustule is a common disease in regions

with warm and wet conditions (Bernard and Weiss 1973;

Kennedy and Tachibana 1973; Matsuo et al. 2017). The

causal agent, Xanthomonas axonopodis pv. glycines, can

cause small, pale green spots with elevated pustules in the

center of lesions, which can grow into large necrotic

lesions causing premature defoliation (Kennedy and

Tachibana 1973; Narvel et al. 2001). The first identified

resistance gene is rxp from cv. ‘CNS’ and was initially

mapped between Satt014 and Satt372 on MLG D2 (Chr.

17) (Feaster 1951; Hartwig and Lehman 1951; Bernard and

Weiss 1973; Hwang and Kim 1987; Palmer et al. 1992;

Narvel et al. 2001). Further studies narrowed the rxp locus

down to a 33 kb genomic region between markers

SNUSSR17_9 and SNUSNP17_12, with two candidate

genes identified (Kim et al. 2010). In addition, another

single recessive resistance gene was identified from PI

96,188. The gene was located on MLG O (Chr. 10) and was

closely linked with Sat_108 (Kim et al. 2011). QTLs have

also been reported against bacterial pustule (Van et al.

2004; Seo et al. 2009; Chang et al. 2016). For example, Seo

et al. (2009) reported four QTLs on chromosomes 9, 14, 17

and 20, explaining 2.7–20.9% of phenotypic variations

(Table 17).

Section V Soybean resistance to virus
diseases

Soybean mosaic virus

Soybean mosaic virus (SMV) is a major global viral

pathogen in soybean that can compromise the soybean

value chain by causing expressive yield losses of up to 90%

in severe outbreaks (Ren et al. 1997a; Wang et al. 2001).

SMV is widely distributed in soybean-growing countries

including Brazil, Canada, China, Japan, Korea, and the

USA (Cho and Goodman 1979; Li et al. 2010b, 2015b). In

China, the occurrence of SMV is gradually increasing

throughout the country and it currently represents the most

prevalent disease in soybean with annual yield losses

reaching over 50% (Zhang et al. 1980, 2015b). Typical

SMV symptoms include reduced seedling viability and

vigor, flower abortion, reduction of pod set, seed number,

and seed size (Hill et al. 1987; Ren et al. 1997b; GunduzT
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et al. 2004). The severity of the symptoms is dependent on

the host genotype, virus strain, plant stage at infection, as

well as environmental factors (Bos 1972).

SMV is classified into strains based on its virulence and

observed symptoms and differs between countries. In the

USA, SMV isolates are classified into seven strains (G1–

G7), where G1 is the least virulent affecting only suscep-

tible genotypes whereas G7 is the most virulent capable of

infecting both resistant and susceptible soybean genotypes

(Cho and Goodman 1979). In China, SMV is classified into

21 groups (SC1–SC21) according to geographical regions

and individual genotypes responses (Moon et al. 2009; Li

et al. 2010b). Genetic resistance is the most efficient

strategy to control SMV (Gunduz et al. 2004). To date, four

independent loci for SMV resistance, Rsv1, Rsv3, Rsv4, and

Rsv5 have been identified (Kiihl and Hartwig 1979; Buz-

zell and Tu 1984; Buss et al. 1997; Li et al. 2010c; Kle-

padlo et al. 2017) although most of the modern commercial

cultivars are susceptible to SMV, particularly to more

virulent strains (Table 18) (Zheng et al. 2005a, b; Shakiba

et al. 2012a).

Rsv1 is the first SMV resistance locus identified and was

mapped on Chr. 13 (MLG F). It represents the most

common resistance locus in soybean germplasm (Kiihl and

Hartwig 1979), conferring resistance to less virulent strains

(G1-G3) and susceptibility to more virulent strains (G5-

G7). A total of ten unique alleles have been identified

including Rsv1, Rsv1-t, Rsv1-y, Rsv1-m, Rsv1-k, Rsv1-r,

Rsv1-s, Rsv1-n, Rsv1-h, and Rsv1-c (Kiihl and Hartwig

1979; Roane et al. 1983; Chen et al. 1991, 2001, 2002;

Shakiba et al. 2013). Rsv3 was mapped on Chr. 14 (MLG

B2) and confers resistance to more virulent strains (G5-G7)

while susceptible to less virulent strains (G1–G4) (Tu and

Buzzell 1987). The Rsv3 locus contains at least six alleles

identified in ‘OX686’, ‘Harosoy’, ‘L29’, PI 61,944, PI

61,947, and PI 399,091 (Buzzell and Tu 1989; Buss et al.

1999; Gunduz et al. 2001; Shakiba et al. 2012b; Cervantes-

Martinez et al. 2015). Rsv4 was mapped on Chr. 2 (MLG

D1b) and confers complete resistance to all SVM strains

(Buss et al. 1997; Ma et al. 2002; Gunduz et al. 2004). A

total of four alleles have been identified from ‘V94-5152’,

PI 88,788, and ‘Beeson’ (Buss et al. 1997; Ma et al. 2002;

Gunduz et al. 2004; Shakiba et al. 2013). Since the reaction

(hypersensitive reaction) observed in Rsv1 and Rsv3 is

different from that in Rsv4, it is suggested that Rsv4 has

unique molecular defense mechanisms (Ma et al. 2002;

Gunduz et al. 2004; Saghai Maroof et al. 2008). Recently,

Klepadlo et al. (2017) suggested that Rsv1-y should be

named as an independent locus Rsv5 because of segrega-

tion in resistance to SMV in progenies derived from PI

96,983 (Rsv1) and ‘York’ (Rsv1-y).

In addition to Rsv1, Rsv3, Rsv4, and Rsv5, several other

genes named Rsc5 (Karthikeyan et al. 2017), Rsc7 (Yan

et al. 2015), and Rsc8 (Zhao et al. 2016) have been mapped

on Chr. 2 (MLG D1b), and Rsc3 (Yang et al. 2013),

Rsc14Q (Ma et al. 2011) and Rsc15ZH (Li et al. 2020) on

Chr. 13 (LG F) for resistance to Chinese SMV strains. Due

to differences in SMV strain classification systems between

USA and China, likely Rsc3, Rsc14Q and Rsc15ZH share

the same locus of Rsv1 whereas Rsc5, Rsc7, Rsc8 share the

same locus as Rsv4 (Table 18). Although rare, the combi-

nation of the four resistance loci is naturally available in

soybean genotypes and can be achieved through gene

pyramiding. Combining multiple resistance genes may

provide more effective and durable resistance and mini-

mize the occurrence of resistance-breaking emerging

populations.

Alfalfa mosaic virus

Alfalfa mosaic virus (AMV) is a member of the genus

Alfamovirus in the family Bromoviridae. It has a world-

wide distribution and infects more than 600 species in 22

dicotyledonous families, including agriculturally valuable

crops such as alfalfa, tomato, lettuce, potato, soybean, and

common bean. AMV is transmitted by more than 15 spe-

cies of aphids, including the soybean aphid [Aphis glycines

Matsumura (Hemiptera: Aphididae)], in a nonpersistent

manner. It is also transmitted by mechanical inoculation

and in some species, such as alfalfa and in reduced values

in soybean, through the seed (Truol et al. 1985; Clark and

Perry 2002; Hartman et al. 2016). Seed transmissibility was

proven to be virus strain and host genotype-dependent in

soybean (He et al. 2010).

AMV is known as a very complex virus which has four

bacilliform particles, elongated with rounded ends. The

particles are 18 nm in diameter and 30, 34, 43, and 56 nm

in length. The viral genome consists of three single strands

of RNA (2.0, 2.6, and 3.6 kb in length) and a fourth sub-

genomic RNA, known as RNA 4 encoding the coat protein

(Hartman et al. 2016; Loesch-Fries 2021).

Symptoms caused by AMV in soybean range from

mosaic to mottle patterns of contrasting mixes of bright

yellow and dark. It is often referred to as a calico or flashy

mosaic. Leaf malformation, stunting, reduced pod set, and

seed coat mottling have also been mentioned. Depending

upon soybean genotype, environmental conditions and

strain of the virus involved, symptoms can either persist or

disappear in the new tissues of infected plants (Mueller

et al. 2007; Hartman et al. 2016).

Synergism between AMV and SMV has been reported.

AMV symptoms are more severe and persist throughout the

season in plants infected by both viruses. The observation

that co-infection of AMV and SMV results in disease

synergism suggests enhancement of potential that AMV
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may become a serious viral disease of soybean (Malapi-

Nelson et al. 2009).

Recommended management strategies include selection

of resistant cultivars and the use of clean virus-free seed.

Resistance to AMV in the Brazilian cultivars ‘Pérola’ and

‘Planalto’ and their common ancestor ‘Hood’ was reported

to be controlled by a single dominant gene (Almeida et al.

1982). Two cultivars, ‘Wuyuezha’ and ‘Baimaodou’, were

described as tolerant in China (Che et al. 2020). In the

USA, resistance to AMV was found in PI 153,282. Genetic

studies revealed the existence of one dominant gene, which

was named Rav1, and DNA marker analysis allowed its

location on a genetic map (Kopisch-Obuch et al. 2008)

(Table 19).

Bean pod mottle virus

Bean pod mottle virus (BPMV), a member of genus

Comovirus in the family Comoviridae, is a major viral

pathogen of soybean first identified in Arkansas in 1951

(Walters 1958). The adult bean leaf beetle, Cerotoma tri-

furcate Forster (Coleoptera: Chrysomelidae), has been

known as a main vector of BPMV, but it is also a

destructive insect feeding on leaves, stems, and pods in

soybean production regions in the USA (Pedigo and Zeiss

1996; Giesler et al. 2002). Plant responses to this pathogen

can range from mild chlorotic mottling to severe mosaic on

younger soybean leaves co-occurring with green stem

symptoms (Giesler et al. 2002; Zheng et al. 2005b;

Rodriguez and Thiessen 2020). BPMV can also cause plant

stunting, leaf distortion, wilting, and reduced pods per plant

and seed size and quality under severe infection (Myhre

et al. 1973; Schwenk and Nickell 1980; Giesler et al.

2002). Soybean yield reductions resulting from BPMV

infection have been reported as high as 52% (Hopkins and

Mueller 1984; Gergerich 1999), and it can be maximized

by the infection before V6 stage (Fehr et al. 1971) or the

co-infections with soybean mosaic virus (Ross 1968;

Rodriguez and Thiessen, 2020). Although Ross (1986)

developed and released four BPMV-resistant soybean

germplasm lines, these lines showed mild symptoms with

systemic infections, and there is still no commercial soy-

bean variety with BPMV resistance (Zheng et al. 2005b;

Rodriguez and Thiessen 2020). Genetic loci for BPMV

resistance have not been thoroughly investigated in soy-

bean, but several studies have successfully engineered

BPMV resistance in transgenic soybean plants by overex-

pressing ds-specific ribonuclease gene PAC1 (RNase III

family) from Schizosaccharomyces pombe and RNAi-

based strategies (Reddy et al. 2001; Zhang et al. 2011;

Yang et al. 2019). However, with previously identified 15

G. soja and 12 G. tomentella lines showing tolerance withT
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mild symptoms or no systematic infection to BPMV, soy-

bean breeders may want to incorporate those useful genetic

sources into G. max by interspecific crosses for further

investigation in specific loci and molecular marker devel-

opment in soybean (Zheng et al. 2005b). The virus infec-

tion assay for BPMV was well described by Zheng et al.

(2005b) using four diverse isolates (K-G7, K-Ha1, K-Ho1,

and AR) and enzyme-linked immunosorbent assay

(ELISA).

Soybean vein necrotic virus

Soybean vein necrosis virus (SVNV) was first reported in

Arkansas and Tennessee in 2008 (Tzanetakis et al. 2009)

and is now found in 22 states in the USA as well as in

Canada and Egypt (Zhou 2012; Ali and Abdalla 2013;

Conner et al. 2013; Han et al. 2013; Jacobs et al. 2013;

Smith et al. 2013; Kleczewski 2016; Abd El-Wahab and

El-Shazly 2017; Escalante et al. 2018). It is now the most

prevalent virus in North America (Zhou and Tzanetakis

2013). Symptoms caused by SVNV begin as clearing of the

main leaflet veins that progressively become necrotic.

When severe, these symptoms can expand to encompass

the entire leaflet (Tzanetakis et al. 2009). Seeds of plants

infected by SVNV can have lower oil and protein content

(Groves et al. 2016; Anderson et al. 2017), with higher

levels of linoleic acid and lower levels of oleic acid

(Anderson et al. 2017). It is not known if the virus reduces

overall yields. There is evidence of seed transmission

(Groves et al. 2016), but SVNV is vectored primarily by

thrips which transmit SVNV in a persistent and propagative

manner (Zhou et al. 2013). The primary thrips vector is

Neohydatothrips variabilis, but the thrips Frankliniella

tirtici and F. fusca also transmit the virus at lower rates

(Zhou et al. 2018).

Two studies have identified resistance related to SVNV.

Zhou et al. (2020) compared the feeding preferences of N.

variabilis on 11 soybean accessions and suggested breeders

consider PI 547,422 as a source of resistance. In a more

recent study, seven soybean genotypes were inoculated

under controlled conditions using SVNV-infected thirps

(N. variabilis), and their results suggested that the geno-

types ‘51–23’, ‘91–38’, and ‘SSR51-70’ were resistant to

SVNV and 51–23 was tolerant (some symptom develop-

ment, but very low virus titer) (Zambrana-Echevarria

2021).

An alternative mechanism to control SVNV is blocking

the vector-virus interaction via synthetic glycopeptides that

compete with SVNV glycopeptides to reduce transmission

of SVNV by N. variabilis (Zhou and Tzanetakis 2020).

These peptides reduced the transmission of SVNV by at

least 50% (Zhou and Tzanetakis 2020).

Soybean dwarf virus

Soybean dwarf virus (SbDV) was first noticed in Hokkaido

in 1969 and remains a major soybean yield suppressor in

northern Japan (Tamada et al. 1969; Harrison et al. 2005).

The symptoms of SbDV include dwarfing (stunting),

downward curling, rugosity, and interveinal yellowing of

the leaves. Rsdv1 is the only gene known to confer major

resistance to SbDV (Uchibori et al. 2009; Yamashita et al.

2013). Another gene, Raso1, was found conferring resis-

tance to foxglove aphid, a transmission vector of SbDV,

but a further study indicated that Raso1 needs at least one

additional gene for resistance to SbDV (Table 19) (Ohnishi

et al. 2012).

Conclusions and future perspectives

With the identification and implementation of molecular

markers tightly linked with resistance genes, the intro-

gression of vertical resistance through MAS became a

practice routinely performed by public and private soybean

breeding programs. Efforts to understand minor genes with

small but accumulative effects for horizontal resistance

will also be needed. What’s more, to expand the sources of

resistance and discover resistance genes and QTLs to

ensure the sustainability of soybean production, continuous

efforts are needed to screen diverse germplasm lines. For

example, the USDA Germplasm Collection (GRIN) pro-

vides more than 20,000 soybeans accessions worldwide

and more resistance sources can be expected to be identi-

fied. Germplasm lines and elite soybean cultivars with

resistance to multiple diseases combined with high-yield-

ing potential and desired agronomic traits are being

developed. In addition, interaction among resistance loci,

allelic and copy number variations, their interactions with

environment, and impact on virulence of pathogens and

disease development deserve close attention in future

research.

Advances in genomics facilitated the introduction of

next generation sequencing (NGS)-based high-density

molecular markers which are quickly evolved and became

available at an accessible cost for both public and private

breeding programs (Song et al. 2013, 2020). Genome-wide

studies revealed many novel regions of the soybean gen-

ome significantly associated with resistance to different

pathogens, and traits that were often considered qualitative

in nature evolved to some extent into quantitative traits

with major and minor alleles with small effects contribut-

ing to the observed phenotypes. The rise of digitally smart-

agriculture and the application of machine learning and

artificial intelligence for characterizing the response of
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breeding lines to specific diseases represented another

breakthrough in breeding for genetic resistance. Disease

assessment screening protocols often reported on categor-

ical scales based on subjective ratings are gradually being

replaced by precise quantitative metrics representing the

observed phenotypes (Gazala et al. 2013; Khalili et al.

2020; Gui et al. 2021; Liu et al. 2021). In combination with

advanced predictive analytics and mega environmental

data, one can predict the response of soybean breeding

lines to specific or multiple diseases in diverse environ-

ments, which can be a powerful tool to anticipate the

deployment of resistant cultivars to potential disease out-

breaks and extreme environmental conditions.

Throughout this review, the impact of pathogens in

global soybean production and their respective yield losses

have been discussed. Substantial yearly production losses

in the order of billions of dollars due to diseases have been

repeatedly reported in the literature for decades (Wrather

et al. 1997; 2001; Allen et al. 2017; Savary et al. 2019;

Bandara et al. 2020). Genetic resistance is the most

effective and sustainable approach for the disease man-

agement in soybean globally, representing a critical pillar

bolstering the global soybean value chain and food secu-

rity. Although hundreds of significant genomic regions

conferring resistance to multiple pathogens have been

reported in this review, there are many components of

genetic resistance still to be enlightened and continuously

investigated. For instance, limited advancements have been

achieved in understanding the pathogen infectious

dynamics and underlying genetic regulations. The sub-

stantial shift and emergence of novel and/or resistance-

breaking strains and emergence of pathogen races impose a

threat to previously validated resistance genes. In addition,

the pleiotropic effect of resistance genes and the interaction

among those in terms of durable broad-based resistance

levels, yield penalty, as well as environmental interactions

are now becoming critically important due to the avail-

ability of big genomic data and emergence of advanced

analytical algorithms (Patil et al. 2019).

Whole genome resequencing facilitated the characteri-

zation of diverse lines with superior haplotypes or alleles

among unexplored germplasm which could be used to

deploy durable resistance in plant breeding program. The

future breeding era is likely to be genomics-assisted

breeding (GAB) including marker-assisted recurrent

selection (MARS), marker-assisted backcrossing (MABC),

haplotype-based breeding, and genomic selection (GS)

(Varshney et al. 2021). Trait-associated genes would be

mapped with NGS-based trait mapping and system biology

approach. Future genetic variations can be estimated by

targeting induced local lesions in genomes (TILLING),

Eco-TILLING populations, and multiparent advanced

generation intercross (MAGIC) or can be created through

genome/gene editing (GE). GE has been emerged at an

unprecedented speed and probably become a primary

technique for translating genomic information to

improvement of the crop in the field. However, the success

of the development of CRISPR/Cas9 transformants is

subject to effective genetic transformation system. Unfor-

tunately, soybean is a recalcitrant crop for plant transfor-

mation technology and most of the GE studies are in

primary phase of development. Although a few studies

have successfully show the introduction of Cas12a-RNP in

soybean protoplast (Kim et al. 2017), enormous efforts may

be needed to implement these tools into soybean.

All in all, the early establishment of the soybean

research field, the vast availability of unexplored genetic

diversity through soybean accessions, the breakthrough

advancements in genomics and analytics, and the dyna-

mism of the environment, pathogens, and host genetic

background will significantly improve the efficiency and

accuracy of global soybean breeding in the next decades,

ensuring the sustainability and growth of soybean pro-

duction worldwide.
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Revue Nématol 14:491–496
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